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Abstract 

This dissertation details the development of a new computational vision model mo- 

tivated by physiological and behavioral aspects of the human visual system. Using this 

model, intensity features within an artificial visual field of view are extracted and trans- 

formed into a simulated cortical representation, and a saccadic guidance system scans this 

field of view over an object within an image to 'memorize' that object. The object rep- 

resentation is thus stored as a sequence of feature matrices describing sub-regions of the 

object. A new image can then be searched for the object (possibly scaled and rotated), 

where evidence of its presence is accumulated by finding sub-regions in the new image 

similar to those stored and with the same relative spatial configuration. A set of over 450 

experimental trials demonstrates the model is capable of memorizing and then recognizing 

arbitrary objects within arbitrary images, as well as correctly rejecting images that do not 

contain the memorized object. A new context-based recognition paradigm is introduced 

that solves the problem of a priori assignation of recognition threshholds, and also can be 

generalized to solve threshholding problems commonly found in pattern recognition envi- 

ronments. A demonstration is provided of the model's applicability to real-world problems 

by memorizing a face and text string, and then successfully searching a video sequence for 

their presence. 

XI 



SCAN-IT: A Computer Vision Model Motivated by 

Human Physiology and Behavior 

/.  Introduction 

1.1    Background 

Man has long attempted to imbue into machines human characteristics and capa- 

bilities. Prom tasks as simple as differentiating between dark and light to the perhaps 

intractable construction of fully conscious, thinking computers, we attempt to automate 

what to us comes completely naturally and easily. With proven working models (our own 

bodies), it seems rational to believe that if we understand precisely how our various bio- 

logical systems function, we may be able to design automated implementations to emulate 

those functions. Indeed researchers have made great strides into understanding how we 

function physiologically and neurologically, but large gaps in our knowledge still exist. 

Though the physiology of the human brain has been extensively mapped, there is still very 

little concensus as to how this tremendously complex system of firing neurons is able to 

work in concert to produce the living, breathing, functioning organisms we are. 

Perceptual processing (e.g., seeing, hearing, feeling) is an excellent example of the 

above dichotomy: though major portions of the neural pathways contributing to the per- 

ceptual senses have been been mapped (that is, specific areas of the brain have been 

associated with specific sensory functions), it is still not at all clear how the neural signals 

combine to contribute to our own inner world, our qualia. But one must crawl before one 

walks, so even our limited knowledge of these neural systems will assist us towards the 

goal of emulating physiological systems with fidelity. 

But other than the pleasure of gaining pure knowledge, why should we be interested 

in emulating biological systems? The answer is because we do what we do so very well. 

As a simple example, say one gives a stack of photographs to a typical adult, with the 

instructions to identify every photograph containing an image of any arbitrary automobile. 



That person will effortlessly perform this task in minimal time, generally regardless of the 

characteristics of the automobile (size, pose, style) or the scene in which it is embedded. 

This is a remarkable trait, and one so natural we do not even think about. To instill such a 

capability into a machine would be of immeasurable benefit in areas as diverse as military 

automatic target recognition and medical physiological anomaly detection. 

Obviously, more high-level neural processing is required for the above recognition 

task than a simple projection of dark and light patterns into the visual tract. For instance, 

using the car example, the subject must know what a car is, how it can vary and remain 

a car, what it looks like in different poses, and, in general, what defines that element of 

'car-ness.' The visual perception process, then, must combine these elements with the 

representation of the object in the visual tract. 

It thus becomes attractive to consider ways in which to construct a computational 

model capable of emulating this biological visual perception process, to include the ability 

to memorize the representation of an arbitrary object and to search for new instances of 

that object in an intelligent and efficient manner. The research reported on here explores 

the development and implementation of exactly such a capability. 

1.2   Problem Statement and Scope 

1.2.1 Problem Statement. This dissertation focuses on the development of a new 

computer vision model motivated by physiological and behavioral aspects of the human 

visual system. Such a model is shown to be capable of detecting, identifying, or verifying 

the presence of virtually any desired object within an arbitrary visual scene. Using this 

model, a search system will be developed that will be seen to memorize and locate arbitrary 

text or objects within a still image or a sequence of video images. 

1.2.2 Scope. Though humans use numerous attributes of visual scenes in the 

process of object identification (e.g., spatial intensity gradients, presence of bars/edges, 

color, or motion), the characteristics used by the model developed here will be limited 

to non-temporal, intensity based attributes. That is, intensity gradients of oriented bars 

and edges within gray-scale, still images will serve as the primary features used for object 



identification. Note that though video imagery will be examined in the course of this 

research, it will be treated as a sequence of still images. Though the human visual tract 

contains cortical neurons responsive to color and motion, those traits will not be extensively 

explored here. 

1.2.3 Research Contributions. In developing this vision model and search system, 

this research has made the following original contributions: 

1. A new model of the human visual tract is introduced that emulates the function of 

neurons in the biological Retina, Lateral Geniculate Nucleus, and Primary Visual 

Cortex. 

2. A view-based standardization process is developed that simulates the physiological 

characteristics of contrast sensitivity, contrast normalization, and cortical magnifica- 

tion to project an arbitrary visual field of view into a standardized, simulated cortical 

map. 

3. A scanning algorithm is developed that in some sense emulates the saccadic behavior 

of the human visual system to permit complete exploration of arbitrary visual scenes. 

4. The characteristics in 1-3 above are synergistically combined to produce a recognition 

model that is shown to be capable of recognizing arbitrary objects within arbitrary 

scenes. 

5. A context-based recognition paradigm is introduced that solves the general thresh- 

holding problem encountered in pattern recognition processes. 

1.3   Dissertation Organization 

This dissertation is organized into seven chapters. Chapter II provides background 

on physiological and behavioral characteristics of the human visual system, and Chapter 

III provides motivation for using a behavioral vision model for object recognition. Chapter 



IV introduces SCAN-IT, a new computer vision model based on these characteristics. 

Results from experimental trials are reported in Chapter V, and a demonstration of SCAN- 

IT's application to a real-world problem is provided in Chapter VI. Chapter VII summarizes 

the research and reviews the contributions made. 



77.   The Human Visual System 

2.1 Introduction 

For human beings, visual perception is a highly dynamic process, with multiple 

fixations required to explore scenes and identify (recognize) objects. These refixations, or 

saccades, are made necessary by the physiological make-up of the visual tract. The human 

visual system (HVS) actually has only a small region of high acuity centered about the 

point at which we are fixating. Saccadic behavior allows us to scan this small, high acuity 

region over relatively large spatial areas and thus collect and process multi-resolution data 

centered around multiple locations in the visual scene [42,59]. The HVS has provided us 

the capability to ignore irrelevant data and collate the pertinent information obtained via 

the multiple saccades, producing a globally consistent, unambiguous view of the world. 

Part of this consistent world view is the illusion of uniform spatial resolution. 

A brief introduction to the physiology and behavior of the human visual system 

would be informative at this point. A simplified description of the visual tract and how 

the visual field of view is formed will first be presented, followed by a discussion of saccadic 

behavior in humans. More detailed accounts of this physiology and behavior can be found 

in [17,31,32,42,43,64,77,83] 

2.2 The Physiology of Primate Vision 

2.2.1 Early Visual Processing. Figure 1 shows a simplified view of the human 

visual tract. Light energy first enters the front of the eye and is focused by the cornea and 

lens on the retina at the back of the eye, centered around the fovea (see Figure 2a). Two 

fundamental types of photoreceptors exist in the human retina: rods and cones [77]. The 

rods are most responsive to low levels of light (scotopic), while the cones respond strongly 

to higher levels of light (photopic). The density of these receptors in the typical human 

retina is shown in Figure 2b, where it can be seen the density of cones is greatest in the 

foveal area, and rapidly decreases as the distance from the fovea increases. Rods, on the 

other hand, are not present in the fovea, but are distributed over a much larger area of 

the retina. It has also been found that the receptive fields of the photoreceptors tend to 
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Figure 1.     Simplified Diagram of the Human Visual Tract [70] 

increase in size with increasing distance from the fovea [70,77]. These facts suggest that 

under normal illumination conditions, the high density of cones in the foveal region will 

lead to a high resolution sampling of the portion of the visual field projected on that region; 

conversely, under low lighting levels, photoreceptor response in the foveal region will be 

quite poor, explaining why we are unable to distinguish dim light sources (such as weak 

starlight) while looking directly at them. The model constructed for this research assumes 

normal illumination, and thus a visual field predicated on resolution levels induced by the 

cone density. 

Once the visual signals generated by the photoreceptors leave the eye, they pass 

through the optic chiasm, a location where the optic nerve outputs from the two retinae 

join and are then re-organized into two separate groups that encode information about 

the right and left visual fields. The majority of the retinal signals then enter the Lateral 
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Figure 2. a) Human Eye. b) Density of photoreceptors in the retina. The cone receptors 
are concentrated in the fovea, accounting for greater resolution of parts of the 

visual scene projected on the fovea [77]. 

Geniculate Nucleus (LGN) layers, where the visual impulses are filtered and sent on to the 

primary visual cortex (VI) via the optic radiation pathway *. 

2.2.2 Primary Visual Cortex. Additional evidence for the multi-resolution field 

of view (FOV) can be found here in the visual cortex. Studies of the mapping of signals 

from the photoreceptors in the retina to neurons in the visual cortex have shown that more 

cortical area is devoted to processing the foveal signals than to the peripheral area signals, 

a phenomenon known as cortical magnification [6,8,44,77,78]. Moreover, the size of the 

neuronal receptive fields in the cortical map of the retina increases toward the periphery 

of the map, indicating reduced spatial sampling and a lower resolution peripheral cortical 

representation of the visual field. The bottom image in Figure 3 shows a slice through area 

VI of a monkey, where the dark cells are those that were responding as the animal viewed 

the pattern in the upper image [70]. The three vertical lines in the tissue slice correspond 

to the half-rings on the right side of the stimulus, and one can see the response to each 

of the different-size rings encompasses virtually the same cortical area.   The retinotopic 

1Tke functions of the LGN are not currently well understood, but are thought to include enhancement 
of contrast information, organization of information (such as color or motion), and functioning as a site to 
receive and incorporate feedback from higher visual areas [70,77] 



organization on VI is also clearly evident here; that is, specific portions of the visual scene 

projected on the retina are mapped to specific areas of the Primary Visual Cortex. 

Figure 3. Cortical Magnification in VI. The bottom image shows a slice through area 
VI of a monkey, where the dark cells are those that were responding as the 
animal viewed the pattern in the upper image [70]. 

Contrast sensitivity also plays a role in the construction of the visual field. Contrast 

is defined as 

C = 
Jmax      ^mm 

+ Lr, 
(1) 

Umax T ^min 

where Lmax is the maximum intensity of the stimulus and Lmin is the minimum inten- 

sity [70]. Neurons in the visual tract can be characterized by the stimuli contrast needed 

to produce some criterion level of response to a harmonic function [72,77]. When a con- 

trast pattern is well suited to a neuron's receptive field, only a low level of contrast will 



be needed to produce the criterion response; an ill-suited pattern will require a greater 

contrast to produce the same response. The amount of contrast necessary to produce this 

response is called the contrast threshold, and its inverse is known as contrast sensitivity. 

Figure 4 shows an example of a typical human contrast sensitivity curve for photopic neu- 

rons with receptive fields covering foveal regions, where the bandpass peak occurs around 

eight cycles per degree [48,77]. Though different test techniques and the selection of neu- 

rons in different portions of the retina may result in the curve shifting somewhat to the 

left or to the right, the bandpass nature remains similar to that seen here. For the vision 

model implemented in this research, the contrast sensitivity function shown in the figure 

will be used. 

I 

1 3 10 30 

Spatial Frequency (Cycles/Degree) 

Figure 4. Typical contrast sensitivity function characterizing a photopic foveal neuron's 
response to harmonic stimuli [48,77]. 

Orientation selectivity also appears for the first time in the visual cortex. The recep- 

tive fields of neurons in the prior portions of the visual tract (retina, LGN) have circularly 

symmetric receptive fields with center-surround properties (See Figure 5) [33,77]. Figure 5 

shows an on-center, off-surround receptive field which will cause neural excitation when 

light falls on the center, and inhibition when light falls on the surround. Off-center, on- 

surround neurons also exist, with the expected inhibitory/excitatory reactions. Because 

receptive fields of different sizes are present (with larger receptive fields tending toward 

portions of the visual field farther from the fovea), differently sized light (or dark) patterns 



Figure 5. 

+ "On" Response 

- "Off'Response 

Center-Surround  Organization  of a  neural  receptive  field  in  the   visual 
tract [77]. 

will strongly excite or inhibit different neurons, but circular 'blobs' of the appropriate size 

will produce the most striking results. 

In VI, for the first time neurons are found with receptive fields not necessarily cir- 

cular or symmetric, but instead with a tendency to be oblong in nature with asymmetric 

on/off characteristics. Figure 6 shows three examples of such receptive fields, which will 

tend to produce excitatory responses to edges, dark bars (lines), and bright bars (lines), 

respectively.   These receptive fields will be of multiple sizes and orientations, and will thus 

Figure 6.      Non-circular neural receptive fields found in VI. 

allow detection (neural activation) in the presence of bars and edges of different thicknesses 

(directly related to bar/edge frequency) and orientations. At this stage, then, the visual 

system is capable of responding to bars and edges at arbritrary orientations and multiple 

resolutions. 

10 



2.2.3 Other Spatial Visual Attributes. The above section describes the ability of 

neurons in the visual tract to process blobs and oriented bars/edges, but other spatially- 

based attributes also play a role in our ability to detect and interpret our visual field of view. 

The most obvious are probably motion and color, and brief descriptions of the neural bases 

for each are offered in the following two sections. However, we are able to easily perform 

recognition tasks with gray-scale, still imagery, suggesting that color and motion, though 

important, are not necessarily vital to all vision tasks. For that reason, this research has 

not delved particularly deeply into the use of color or motion for object recognition. The 

following sections are thus included for completeness, but the characteristics described are 

excluded from the model developed for this research. 

2.2.3.1 Motion Sensitivity. In addition to detecting stationary bars/edges, 

neurons have also been found that specifically respond to spots, bars, or edges sweeping 

across the receptive fields, even to the extent of only being responsive to one direction of 

motion (right to left, for example) [31,32,77]. Figure 7 shows a model proposed by Sekuler 

to explain the directional sensitivity to motion [70]. 

Receptive Fields 

At 
Delay 
Unit 

& 
Correlator 

Figure 7.      Model proposed by Sekuler to explain motion specificity of neurons [70]. 

As a stimulus passes through the receptive fields, responses are generated and passed 

down to the correlator, which will generate a neural output based on its input. The left 

11 



path, however, has a time delay built in, so the neuron will maximally respond only when 

the stimulus first enters the left receptive field, and then after the interval At enters the 

right receptive field. The neuron will thus respond most strongly to a stimulus sweeping 

from left to right at the appropriate speed. Obviously, using this model one assumes that 

neurons exist with different At characteristics (and/or different spatial distances between 

the receptive fields) to allow response to stimuli sweeping across the fields at different 

speeds and directions. 

2.2.3.2 Color Detection. Color also plays a role in our ability to recognize 

visual scenes or identify specific objects within our field of view. The following discussion 

is generally based on descriptions given by Hall [24] and Martin [50], but more information 

on color physiology and processing can be found in [4,33,77,83]. 

Our color detection capabilities again begin with the rods and cones lining the retina. 

These photoreceptors contain pigments that absorbs some wavelengths better than others, 

and researchers have found three distinct types of cones, differentiable by their spectral 

sensitivities to light (though the rods also contain pigment, this research assumes photopic 

illumination conditions, where only cones come into play). These three different types of 

cones act as bandpass filters, and are known as L (long wavelength peak), M (medium 

wavelength peak), and S (short wavelength peak) cones. 

Signals produced by the cones are processed through neurons in the retina, and then 

are sent via the optic nerve to cells in the LGN. Three types of cells are found here: L cells, 

which are hyperpolarized by light stimulation regardless of the light's spectral composition; 

r-g cells which are hyperpolarized maximally by green and depolarized maximally by red; 

and y-b cells, which are hyperpolarized maximally by blue and depolarized maximally 

by yellow. These latter two cells are called color-opponent cells and appear to form two 

chrominance (color) channels to the visual cortex. The non-opponent L cells seem to 

carry brightness, or luminance, information about the field of view. The luminance and 

chrominance information is then carried to the visual cortex for processing into our inner 

perception of form and color. 
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2.3   Saccadic Behavior 

The previous sections on motion and color sensitivity were included for completeness 

and described characteristics not to be incorporated into the research described in this 

document. Saccadic behavior, on the other hand, will play an integral role in the model 

developed here. An example of this behavior is shown in Figure 8. Figure 8a shows 

a photograph of a girl, while 8b shows a typical recording of the eye movements made 

by a human test subject while exploring the image [81].   The subject was instructed to 

Figure 8.     a) Photograph of a girl b) Recording of eye movements during examination of 
the photograph [81] 

examine the picture with both eyes, and the plot shows the scan path recorded over a one 

minute period. One notes that a preponderance of the fixations are made to the eyes, nose, 

and mouth of the girl, hinting that these areas somehow provide added attraction to the 

attentional focus. Indeed, several researchers have shown that the calculation of saccadic 

targets is highly dependent on the particular task at hand (memorization or search, for 

example) and the familiarity of the object/scene being examined [2,29,43,81]. A saccade 
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is thus made to the region containing the most interesting features, the features that will 

best solve the current problem. 

During visual exploration or recognition tasks, the human eyes will fixate on the por- 

tions of the visual field which have been deduced to have the most information (relative to 

the particular task being performed), but simultaneously the lower resolution portions of 

the visual field will be explored to determine the next relevant location on which to fixate. 

These two different functions are known as attention (fixating on or attending to a par- 

ticular image region) and pre-attention (determining the next attentional region). Neural 

implementations of these processes, and how they cooperate to give us our unambiguous 

view of the world, are not very well understood at this time, despite the large amounts of 

ongoing research (see, for example, [16,21,34,40,59,68]). 

Though not universally accepted, several researchers have supported the importance 

of the scanpath (sequence of fixations) in visual perception and recognition [14,59,61,62,81]. 

Noton and Stark compared the scanpaths of human eye movements in image memorization 

and subsequent image recognition, and found the paths to be topologically similar [55]2. 

They suggest that an object is memorized and stored as an alternating sequence of object 

features and eye movements required to attend to the next fixation point; that is, that 

motor memory seems to be a vital part of recognition. The recognition process, then, 

consists of the appropriate eye movements followed by verification of the expected image 

features at each fixation point. 

Other neuro-anatomical and psychological data have supported this behavioral pat- 

tern [41,53,75]. It has been proposed that two major pathways seem to be present in the 

higher levels of the human visual system, dubbed the 'where' path, involved in representing 

spatial and spatial relationship information, and the 'what' path, dealing with represent- 

ing object features. These paths appear to provide the link between the low-level, retinal 

processing and the high-level brain structures involved in visual perception. 

2This is not to imply that the scanpath (ordered sequence of saccades) accomplished during examination 
of an object or scene will be identical over multiple scans, but the paths can be expected to be similar. 
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2-4    Summary 

In this section background has been provided on certain physiological and behavioral 

aspects of the primate visual tract. Though massive amounts of research have been accom- 

plished (and continue to be accomplished) on virtually every aspect of visual processing, 

the concentration here has been on providing an overview of the characteristics with which 

the vision model developed for this research will be imbued. The next chapter will provide 

motivation for using a behavioral model for object recognition and will provide implemen- 

tation details of the existing computational foundation upon which the new vision model 

is based. 
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III.   Why a Vision Model Motivated by Behavior? 

3.1    Introduction 

The model developed during this research relies on behavioral aspects of the human 

visual system, but of what benefit is using such a model for object recognition in natural or 

complex scenes? Perhaps the most persuasive argument is that our own visual perception 

system performs remarkably well using such behavior. Though admittedly we are still far 

from a complete and precise description of visual processing, having a proven, working 

biological system naturally motivates the emulation of that system in a computational (in 

the sense of non-biological computation) setting. 

Rimey and Brown state in [63] that "a task-oriented system should perform its task 

with the minimum necessary effort." The emphasis on extracting features from only a small 

portion of the visual scene at a time meets this objective. Extraction of global features 

from a scene containing the object to be recognized within a natural background will 

be computationally expensive and memory intensive. The scene background will supply 

many distractors to the object, and the recognizer must be capable of discounting this 

interference between features of the object and features of the background (the so-called 

Feature Integration and Binding problems). Also, the recognizer must be invariant to 

spatial variations (scale, translation, and rotation), in most cases requiring potentially 

extensive global transformations to an alternate domain. 

Using saccadic behavior, storage requirements for the representation of each field 

of view (FOV) can be small, allowing quick comparisons (error measure calculations) of 

memorized FOVs with those extracted from new scenes. Because the FOV is small when 

compared to the entire image, the background is likely to play only a minor role when 

the focus of attention mechanism locates a familiar region on the memorized object. Once 

this familiar FOV is found, the memorized scanpath can be repeated over the new scene 

(in a spatially invariant manner, as explained in Chapter IV), and at each fixation the 

comparison will still be a computationally simple one. Evidence will then be accumulated 

at each fixation point that will either support or detract from the overall hypothesis that 

the object has been found. 
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Though much behavioral research has been accomplished in the field of active vision 

(e.g., [9,17,19,21,27,43,60]), few models have been proposed to serve as an engine for 

object recognition systems. Rimey and Brown use Hidden Markov Models [62] and Bayes 

Nets [63] to determine the fixation sequences that will best provide evidence that a specified 

activity or task is present within a visual scene (for example, a table place setting identified 

as fancy or non-fancy but does not per se recognize single objects via multiple views. 

Hecht-Nielsen presents a neural net active vision system that uses a saccadic process to 

find possible targets within a scene [28]. Probably most similar to the model resulting from 

the research reported here is one described by Rybak in [66,67], where an artificial visual 

field is constructed and edge features extracted at 48 specified spatial locations. Saccadic 

behavior is then incorporated based on the competing attraction of those points. Because 

SCAN-IT has this model at its roots, it is worthwhile to provide additional details on the 

Rybak implementation. 

3.2   Rybak 's Saccadic Vision Model 

3.2.1 Top Level Overview. The first stage of Rybak's model involves memorizing 

a segmented object via a sequence of fixations and saccades. Edge features at each fixation 

are memorized and stored in Sensory Memory, and the scanpath of the saccades is stored 

in Motor Memory. Once the system has learned what the object looks like, another image 

containing the object is presented. A search algorithm is used to scan the image, and when 

a fixation results in a match with a memorized feature set, a hypothesis is formed that the 

object has been found. At this point, the motor memory is accessed, and the scan path 

used during object memorization is invoked. If the expected feature sets are found at the 

expected locations, the hypothesis is accepted. Otherwise, the hypothesis is rejected and 

the system reverts to search mode. 

Figure 9 shows a block diagram of the Rybak model. The Attention Window first 

transforms the image into a multi-resolution retinal image, followed by primary feature 

detection on the retinal image. The feature detector consists of orientationally selective 

neurons to detect edges and their orientations. The basic edge is defined as the edge 

located at the fixation point, and all other edges are defined as context edges. Rotational 
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Controller] 

Figure 9.      Block Diagram of the Rybak Visual Perception Model [66] 

invariance is then provided by a coordinate transformation based on the intensity gradient 

of the basic edge. One of three different modes is then selected: 

Memorization. Image patch features are extracted at a sequence of 

fixation points and stored in sensory memory. The next fixation point is determined by 

the attraction of each of the context edges. The successive saccades are stored in motor 

memory, and the object is then defined by the alternating sensory and motor memory 

traces. 

Search.        Under control of a search algorithm, an image is continually 

scanned until a retinal image similar to one of the stored images is found (in sensory 
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memory). At this point, the hypothesis that the object has been found is formed and the 

system invokes the recognition mode. 

Recognition. Using the motor memory data obtained from the model 

object, the system attempts to verify the data recalled from the sensory memory for each 

memorized fixation point. If a sequence of successful matches occurs, the object is recog- 

nized. Otherwise, the system returns to search mode 

3.2.2 Attention Window (AW). The major function of the AW is to transform 

the initial image patch into a retinal image with resolution that decreases from the center 

to the periphery. Rybak accomplishes this using a Gaussian-like convolution proposed by 

Burt [5]. Given the initial image I = {xij} and resolution level I, then the value of each 

point in the image patch is calculated by 

2 2 
Xij =   Yl     X)  Spq- *<-(2'-l.p)j-(2'-l-9) >l = {°> !> • • • , L} 

p=-2g=-2 

where L is the lowest resolution level to be calculated and gpq is defined as 

[9pq] = 256 

14 6 4 1 

4   16 24 16 4 

6   24 36 24 6 

4   16 24 16 4 

14 6 4 1 

, p and q = -2, -1, 0, 1, 2. 

The transformation from the initial image I = {xij} into the retinal image IR(n) = 

{xfAn)} then must be calculated for each nth fixation point. Given three levels of resolution 

centered at fixation point (io(n),jo(n)) where resolution is l0 (the resolution of the original 

image), the fixation point is the center point of three concentric circles with radii defined 

by 

RoUo) = 1.5 • 2'° , 

Äi(J0) = 1.5-2'°+1
> 

R2(l0) = 1.5-2l°+2 . 
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The retinal image at the nth fixation point is then determined by 

xg(n) 

4(n)        ,if Pij(n) < Ro(k) 
xlo(n)+i    )if Ro(l0) < pij(n) < Rl(l0) 

>(n)+2     ^ Rl{lQ) < pij(n) < R2(lQ) 

where 

Pij{n) = yj{i - i0(n))2 + (j - jo{n))2 

The retinal image thus has the highest resolution at the center region, next highest within 

the annulus surrounding the central circle, and lowest within the outer annulus. Figure 10 

shows the areas of different resolution within the AW. 

lo+l 
I   lo+2 
12 

1 = lo + 1 

1 = lo + 2 

Figure 10.      Multiple Resolution Annuli Surrounding Foveation Point 

3.2.3   Feature Detection.      Hubel and Wiesel pioneered the theory that the primary 

visual cortex contains frequency and orientation selective neurons [30-32], which in the 
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simplest case detect the arbitrary orientation of edges at each point in the retinal image. In 

the Rybak model, such edges are considered to be the primary features, and are detected 

with resolution dependent on their location within the visual field. The orientationally 

dependent receptive field (ORF) is implemented using 16 oriented neurons based on the 

description by Grossberg, et al [21], as the difference between two Gaussian convolutions 

with spatially shifted centers. Given the points (p, q) in the visual field (where 

p,q E {—2,-1,0,1,2} = 5), the input to a neuron tuned to orientation a at coordinate 

(i,j) is given by 

Y-■   - V xR ■ (G+ ■■   -G~ ■■ ) J-ija / j ^pq    V^pqija pqijal   ' 
pqeS 

where 
Q+        = p-7

2-((p-«-"iQ)2+(?-j-nQ)2) 
pqtja > 

pqija 

with 7 the reciprocal of the variance. ma and na are determined from the ORF orientation 

as 
ma = d(l) ■ cos(2 • 7T • a/16), 

na = d(l) • sin(2 • TT • a/16). 

where d{l) is the distance from the center of each Gaussian to the center of the ORF, and 

is found by 

d(Z) = max{2/-2,l} 

The 16 co-located neurons, each with a different orientation, undergo a competitive 

(inhibitory) interaction to achieve steady-state equilibrium, obeying the system of equa- 

tions 
jy. 15 

r.^2L = -Vija + Yija-T-b-Y,Zijk, k^a 
dt k=0 

Zija = f(Vija);   a = 0,1,2, •••, 15 , 

where Vija and Xija represent, respectively, the neuronal membrane potential and the 

output of the neuron at location (i,j) with orientation a. The parameter b characterizes 

the reciprocal inhibition, T is the neuronal threshold, and r is the time constant associated 
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with the neuronal threshhold. The nonlinear function f(V) is defined by 

f(V) = « 
V   ,V>0 

0     , otherwise 

The system of differential equations achieves equilibrium at one of two solutions: 

• all Zija = 0 (if all Yija < T) 

• only one Zija = Yija - T > 0 at orientation </>, and Zija = 0 if a ^ <f). 

Then an edge is considered to exist at (i,j) for the second case, with orientation </> and 

brightness gradient Z^; an edge is not detected for the first case. 

At each fixation point, edge detection takes place at 49 locations on the retinal 

image: at the fixation point itself (the basic edge), and at the intersections of 16 radiating 

lines (corresponding to the orientation of the 16 neurons) with the three concentric circles 

defining the regions of different resolutions (see Figure 10). Thus, 48 context edges may 

be defined for every fixation point. 

3.2.4 Invariant Transformation. The coordinate system is next transformed into 

a feature-based frame of reference. A new reference axis is defined along the vector of 

the brightness gradient of the basic edge, and thus each context edge can be invariantly 

represented in this relative coordinate system by three parameters <f>, tp, and A (see Figure 

11). The parameter <f> is the relative orientation of the context edge (with respect to the 

basic edge), tp is its relative angular location, and A defines the distance from the fixation 

point. These parameters are calculated as follows: 

(j> = modi6(</>c - 4>0 + 16); 

V> = modieO/'c - i>o + 16); 

A = / - l0 

Thus each retinal image can be invariantly represented by three, 16-component vec- 

tors: 

^\(n) = {(Mn),Mn),---><t>i5(n))\ ■   A = 1,2,3} 
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Figure 11.      Relative Coordinate System with Respect to Basic Edge [66]. 

These vectors are stored in the sensory memory for comparison with those calculated 

from new retinal images. One similarity metric proposed by Rybak is 

D{4>^\,4>%\)^   TrS5Z ^riTl + 8sin2(§-(^A-^A)) 

where TV is the number of edges in the retinal image. The two images <j>$\ and <p^x are 

considered similar if D exceeds an experimentally determined (and application or database 

dependent) threshold. 

3.2.5 Selecting the Next Fixation Point. Each context edge in the current retinal 

image is considered a potential target for the next fixation point. The shift from the nth 

fixation point to the n+lth point is stored in the motor memory as a set of shift parameters, 
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calculated relative to the nth coordinate system. These parameters are defined as 

V'shiftfa'n + *) = V»n+l(n) 

/shift(n'n + 1) = Vu(n) 

öshift(n'« + 1) = 'o(n + 1) - fo(™) 

where V's/w/t and ^fei/t define the relative direction and distance of the shift, and ögkift 

defines the change of resolution in the central region of the AW when attention moves from 

the current fixation point to the next (for the current implementation 0shift wm be 0). 

The selection of the next fixation point is a non-trivial problem, and is generally 

accepted to be task-dependent, relying in humans on some abstract cognitive processing. 

In the Rybak model, each context point attracts the AW with a force Ak, defined as 

Ak = Ai- —— + a2 • -%■ + a3 • »jy (n) + a4 • Xij- 

The first term on the right hand side of the equation provides for the dependence of 

the attraction on a normalized value of the brightness gradient in the context point; the 

second term provides for the dependence of the attraction on the relative distance of the 

context edge from the current fixation point; the third term is included to prevent cycling 

repeatedly back to the same area. The function r]ij(n) determines the novelty of the area 

containing the selected context point, and is set to zero immediately after selection for 

all points within some distance of the new fixation point. The function is then allowed 

to recover to a value of 1 over time. The parameter Xij defines a semantic significance 

of the area including the context point, and may be defined appropriately if knowledge is 

available (for example, if the object being memorized is a human face, additional attraction 

can be invoked by context points in the vicinity of the eyes, nose, and mouth [81]. The 

coefficients ax are selected experimentally during training. 

3.2.6 Results and Limitations. Rybak showed that the system was able to mem- 

orize, then recognize objects in gray-level images invariantly with respect to shift, rotation, 

and scale. However, certain limitations are imposed by the model that decrease both its 

effectiveness and its fidelity (with human biology). 
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First, the cortical receptive fields generated by Burt's Gaussian-like convolution do 

not have a very accurate relationship with those found in the primate visual cortex [10,12, 

79]. Other functions exist that can be used to better represent the oriented receptive fields 

of simple cells, and in the next chapter we propose the Gabor as an appropriate option. 

Next, it is agreed that the saccadic behavioral process as described in Section 2.3 

is an appropriate method to emulate Mishkin's 'where' path, but what are the desired 

features to be processed along the 'what' path? As discussed in Chapter II, it is well 

accepted that the visual pathway contains cells uniquely responsive to different stimulus 

dimensions, such as frequency, bar/edge orientation, bar/edge size, bar/edge direction of 

motion, color, and others. It would seem logical then, that the set of such features, or 

a subset thereof, would be appropriate for the implementation of a physiologically-based 

visual system. Olshausen [57] and Bell and Sejnowski [3] propose that edges and bars 

are actually the independent components forming a basis set for natural images, and that 

it is thus appropriate and natural that the human visual system contains edge and bar 

detectors. Thus, though biological neurons exist that are responsive to the other stimulus 

dimensions, it appears that those responsive to edges and bars should be adequate to 

perform memorization and recognition in natural scenes. The Rybak model indeed uses 

edges as features, but a more effective model will be one based on detection of both bars 

and edges. 

A major limitation of the Rybak model is the arbitrary restriction to 48 assigned 

(by location) points for both feature extraction and saccadic targeting. There is very little 

guarantee that the interesting features will always be located at those points surrounding 

the fixation, and indeed, much more information is lost than retained using such a method. 

Tighter segmentation is also required prior to memorization, as any features extracted from 

non-object background will simply add noise to the final representation of the memorized 

object. During saccadic memorization, because a saccade can only be made to one of those 

48 locations, it will tend to take a large number of saccades to rediscover the object in a 

new setting. Indeed, in a local implementation of the model, though recognition of simple 

objects was adequately performed, greater than 200 saccades were required to locate those 

objects in images sized to 128 x 128 pixels. 
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3.3   Summary 

This chapter has motivated the use of behavioral and physiological characteristics for 

computational vision, and has provided a detailed description of the vision model proposed 

by Rybak, on which the model developed during this research is based. The limitations 

of the Rybak model (poor receptive field representation, inadequate feature selection, and 

restrictive spatial limitations) have been discussed, and the ways in which they will be 

overcome are addressed in the next chapter, where a new computational vision model is 

introduced. 
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IV.   SCAN-IT: A New Model of Computational Vision 

4-1    Introduction 

This chapter introduces SCAN-IT, Saccadic Control for Active Neural Identification 

of Targets. SCAN-IT is based on physiological and behavioral characteristics described in 

Chapter II and is designed to emulate, in some sense, the active vision process as exhibited 

by humans. 

The chapter will begin with a top-level overview of SCAN-IT. Implementation details 

are then discussed, beginning with a description of the Gabor function and its suitability in 

emulating a neural receptive field. Construction of a simulated visual field of view (FOV) 

is described, as well as the transformation of this FOV into a view-standardized space and 

finally to a representative feature matrix. Function of the model in memorization mode is 

presented in detail, as is the function in search and recognition modes. 

4.2   SCAN-IT Overview 

The vision model implemented here operates in three fundamental modes: memo- 

rization, search, and recognition. During memorization, a fixation point is automatically 

selected on the object/scene being memorized, the visual FOV around that point is con- 

structed, and the features within the FOV are memorized (saved as a feature matrix). A 

new fixation point (saccadic target) is then automatically selected, the focus of attention 

moves to the new location, and the entire process repeats for the user-specified number 

of saccades. This scanning process results in an alternating sequence of feature matrices 

and saccadic instructions (describing the direction and distance from the previous fixation 

point) that represents the object/scene of interest. 

In the search task, a new image is presented to the model, and a saccadic scan is 

performed. At each fixation, the visual field is again constructed and the features extracted, 

but rather than simply saving the data, this feature matrix is compared with each of the 

feature matrices computed during memorization. If a match is found (where the meaning 

of "match" will be discussed in Section 4.6), the hypothesis is formed that indeed the 

object/scene is present in the new image. At this point, recognition mode is invoked, and 
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the sequence of saccades recorded during memorization is repeated over the new image. If 

the expected features are found around each fixation point, the object/scene is recognized, 

otherwise the model reverts to search mode. If the image has been fully explored with no 

successful recognition, the search is terminated with the conclusion that the object/scene 

is not present in the new image. 

4.3   SCAN-IT's Visual Field Representation 

4.3.1 The Gabor Filter for Oriented Bar/Edge Detection. In 1980, Daugman 

proposed a novel model for the two-dimensional receptive field of simple cells in the vi- 

sual cortex [10]. This model was based on a family of functions first introduced by Ga- 

bor [18] which were composed of one-dimensional sinusoids constrained by one-dimensional 

Gaussians. Daugman's work introduced the concept of two-dimensional Gabor functions, 

comprised of sinusoidal planar waves constrained by Gaussian envelopes1. Though all 

spatial-frequency filters have an inherent space/frequency trade-off, filters built using Ga- 

bor kernels have been shown to provide optimal joint resolution in the spatial and fre- 

quency domains [10,13,18]. The spatial domain impulse response function G(x,y) of a 

two-dimensional Gabor filter is given by [11] 

g(x,y) = exp(-7r[(a; - x0)
2a2 + (y - Vofß2]) 

■ exp(-2irj[u0(x - x0) + v0(y - yo)]) (2) 

which is characterized by the position parameters (x0,y0), modulation (frequency) pa- 

rameters (UQ,V0), and scale (spread) parameters (a,ß). The function g(x,y), then, is the 

product of an elliptical Gaussian centered at (x0,yo) with aspect ratio ß/a, multiplied 

by a complex modulated exponential with spatial frequency JUQ + VQ and orientation 

tan-1 (^o/«())• Tne Fourier Transform of g{x,y) is given by 

{U-UQ)
2
      (v-vQ)

2\ 
G(u, v) = exp   —7T 2 1~ 

v a2 ß2      J 
exp (-2-nj[xQ{u - u0) + yo(v - v0)\) (3) 

xThe mathematical foundations of Gabor theory and its applicability to cortical modeling are presented 
in detail elsewhere   [10,11,13,18,20,37,74]. 
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The analytic functions described above contain both even-symmetric (cosine) and 

odd-symmetric (sine) parts in complex space. To describe a physically meaningful quantity 

that can be related to the receptive field response profile of a biological neuron in the visual 

cortex, one would like to create a real filter profile with the desired symmetry, modulation, 

and orientation properties. A filter to detect the illumination gradients of oriented edges 

at a specified frequency can thus be constructed using the pure sine component of g(x, y) 

(see Figure 12a), and the associated Fourier Transform \{-jG(u,v) +jG(-u,-v)} (see 

Figure 12b). Oriented bars can be similarly detected using the pure cosine component of 

g(x, y), \{G(u, v) + G(-u, -v)} (Figure 12c and d). For the functions shown in Figure 12, 

x0 - i/o = 0, v0 = 0, u0 = ±8 cycles/degree, and a = ß = vV/16) deS~ • 

""«*$ ¥*«<** 

Figure 12.      Two dimensional Sine and Cosine Gabor functions.   (a,c) Spatial domain 
response (b,d) Fourier transform of Gabor function. 

In 1984, Jones and Palmer performed direct measurements of cortical cells in a cat's 

visual cortex and demonstrated that the Gabor model indeed approximates Simple Cell 
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receptive fields [37]. Zeki theorizes the cells in the primary visual cortex are organized to 

form multiple views of the retinal image, where the cells are selective to particular spatial 

frequencies and orientations [82]. The multiple views can be implemented by processing 

an image through multiple Gabor filters, each tuned to a unique spatial frequency and 

orientation. As shown in Figure 12b, a single 2D Gabor function can be constructed to 

cover two anti-symmetric, elliptically shaped regions in the frequency domain, and through 

the use of multiple filters, a broad range of spatial frequencies and orientations can be 

detected. In other words, an ensemble of such filters will be capable of detecting edge 

gradients at different resolutions and different orientations within an artificial visual field. 

Similarly, detection of oriented bars can be accomplished using an ensemble of filters based 

on the response seen in Figure 12d. 

4.3.2 Constructing the Visual Field of View (FOV). The FOV in this model 

is represented by four separate mappings, two representing edge/bar magnitudes, and 

two representing edge/bar orientations at the associated spatial locations. The circular 

regions resulting from these mappings decrease in resolution as distance from the center, 

or fixation point, increases. Figure 13 gives a block diagram of the FOV building process, 

and Figure 14 provides a more detailed example of the construction of a multi-resolution 

edge intensity map. The orientation maps will be the same shape and size, but the entries 

will be the orientation of the dominant edges/bars at that location, as explained below. 

Edge 
Intensity Map 

Input 
Image 

CSF 
Filter 

Gabor 
Filter 

Edge 
Extraction 

Bar 
Extraction 

Edge 
Orientation Map 

Bar 
Intensity Map 

Bar 
Orientation Map 

Figure 13.     Block diagram showing the construction of the Field of View. 

The image under examination is first bandpass filtered (using a functional form pro- 

posed by Mannos [48]) to emulate the responses of biological neurons to contrast variations 
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Figure 14.      Example of the construction of the edge intensity map. 

in the visual scene. The output is then processed through a filterbank consisting of mul- 

tiple Gabor filters parameterized at different frequencies (resolutions) / and orientations 

6: 

K(x,y,f,0) = l(x,y)*g(x,y,f,<f>),   f = %, l = 0---L-l; <f> G $ (4) 

where * indicates convolution, U are the filter outputs, I is the original image, g is the 

spatial domain Gabor function, N is the Nyquist frequency of the original image being 

processed, L is the maximum number of resolution levels, and $ is the set of all desired 

orientations. As in Equation (2), / and (f> are parameterized by VQ and UQ as / = y (u^ + v$) 

and (f) = tan-1 (wo/■"())■ 

For the work presented here, three resolution levels are used (L = 3), with 12 orien- 

tations, in 30-degree increments, at each level ($ = {30,60, • • •, 360}). Such an orientation 

distribution correlates well with that found in physiology [32], and results in a total of 

72 filtered images from the filterbank, representing the responses to edges and bars at 36 

different orientation/resolution combinations. First for the edge images, and then the bar 

images, a Max operation is invoked at each resolution level to determine, at every spatial 

location (every pixel location), the orientation producing the response with the greatest 
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magnitude: 

Kmax(x, y, f) = max{ft(x, y, ft, <j>) , i = 0 • • • L - 1; <j> G $} (5) 

This process will produce a magnitude edge map, a magnitude bar map, and the two 

corresponding orientation maps at each resolution level (only the edge magnitude map is 

shown in Figure 14), representing the maximally responding orientations at every point 

in the image. The artificial visual fields FMagixiV) and Forient(x,y) can then be con- 

structed by assembling the appropriate disk/annulus surrounding the fixation point from 

each resolution level. 

4.3.3 View-Based Standardization. Recall from Section 2.2 that the principle of 

cortical magnification dictates that more cortical processing is devoted to regions closer to 

the fixation point than to more peripheral regions. This will be reflected in the model by 

converting the FOV into a polar representation (Figures  15 and 16) via the mapping 

f(r,6) = F(p(r-cos9),p(r-sin0)),   9 G {Ae,2 • Aö, • • • ,360} (6) 

r = yjx2 + y2 , x, y G V 

where p(-) indicates the operation of rounding to the nearest integer, A# is equal to 360 

divided by the desired angular granularity, and V is the collection of pixel locations making 

up the field of view. This process is accomplished for both J^Mag an<l ^Orient- Every row 

in the resulting transformed views correspond directly to a radial in the associated circular 

FOV, with movement vertically in the polar view translating directly to rotation in the 

pre-transformed view. 

One would next like to represent these FOVs in a framework such that rotational 

orientation of the circular FOV (and ultimately the sequence of FOVs) is irrelevant to 

the search/recognition task. This is accomplished by rotating (shifting vertically in polar 

coordinates) the views such that all elements are presented with respect to the orientation 

of the edge at the fixation point, <f>c. Note that the edge and bar magnitude maps both are 

shifted using the orientation of the edge at the fixation point.  Additionally, all elements 
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Figure 15.      Transformation of FOV into polar space. 

in the orientation maps Torient are transformed to provide orientation information with 

respect to the center edge. The following equations define the two mappings: 

fMa9(r, 0) -► t(r, (0 - fa) mod 360) 

ForienM) ~> Forient({<l> ~ 4>c) mod 360) 

(7) 

(8) 

Scale invariance is also implemented. During construction of the visual field for 

memorization, the outer radii of the rings surrounding the fixation point are defined as 

r x 2k, where r is the radius of the inner-most ring (the center disk), and k is the resolution 

level (with k = 0 at the original resolution). During search/recognition, however, the value 

of r can be varied during construction of the FOV, allowing examination of the image at 

multiple scales. The tremendous number of parallel cortical connections in the human 

brain [82] suggests that implementing such an approach in parallel is reasonable. Because 
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Magnitude FOV Transformed 
Magnitude FOV 

Figure 16.      Polar transformation example. 

the features used to describe the FOV are independent of its size, this approach works 

well. 

4.3.4 Matrix Representation of the Field of View. Multiple histogram-based 

feature vectors are next extracted to represent the FOV. Because of the importance of 

maintaining information on the relationship between edges/bars in different portions of the 

visual field, SCAN-IT partitions it into eight regions: four regions representing quadrants 

of the circular visual field, three regions representing rings of increasing distance from the 

fixation point, and one region consisting of the entire visual field. The first four regions Pi 
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will contain the edges E determined by the relation 

Pi = {ER>e | r0 < R < r3, (Oi-Se) mod 360 < 6 < {0i+l+8e) mod 360 },    i = 0,1,2,3 

The 8g term is provided to allow a limited overlap of each region with its two adjoining 

regions. This overlap increases the system's robustness to small rotational variations. The 

next three regions are defined in a similar manner by 

Pj = {ER,Q \rj  < R < rj+1, e0  < e < 04},    » = 0,1,2 

As stated previously, the final region contains all elements within the visual field. 

For each region, a normalized histogram of the magnitudes of the oriented edges is 

next constructed as 

£  l£al 
Hi{a) ~ *YW (9) 

EePi 

where Hi(a) is the normalized magnitude of the total response of edges at orientation a 

in region Pi, Ea is an edge with orientation a, and \Ea\ is the raw magnitude of an edge 

at orientation a. The current FOV is thus memorized as a matrix whose rows represent 

the relative magnitude of a particular orientation in a particular region. 

4-4    Saccadic Attraction 

To determine a saccadic target, one must determine the point in the artificially 

constructed FOV that is the most interesting. In this case, the phrase interesting can be 

described in terms of edge intensities and distances from the current and past fixation 

points. We calculate the attraction of edge EXyV at spatial location x, y within the FOV as 

follows: 

attraction(EXty) = [a • \Ex>y\ + b • Dx,y) ■ PXjV (10) 
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where \Ex>y\ is the magnitude of the response of edge Ex>y at spatial location (x,y), DXjV 

is the distance of the edge from the fixation point, and Px>y is the penalty associated 

with the location of the edge due to a previous fixation at or near that point, a and b 

are experimentally tuned parameters used to adjust the relative importance of the edge 

magnitude and distance from the fixation point. For our trials (Chapter V), a value of 

a = 1 and b — ^^ worked well, where r is the radius of the circular field of view. 

4-5   Memorization 

Figure 17 shows a block diagram of SCAN-IT in memorization mode. An initial 

fixation point is first automatically selected by choosing the location with the greatest 

edge response at the lowest resolution, and the invariant FOV is constructed as described 

in Section 4.3.2. The feature matrix is then extracted and stored in what can be termed 

the 'what' memory. The attraction of each edge in the FOV is calculated, and the winning 

location is selected. The distance and angular direction (with respect to the orientation of 

the edge at the fixation point) to the winner is calculated and stored in 'where' memory, 

and the focus of attention is shifted to the new fixation point. This process is repeated 

for the desired number of saccades2, and at its conclusion the object description has been 

stored as two matrices, one consisting of the concatenation of the feature matrices extracted 

from around each fixation, and one containing the angular and distance information needed 

to describe the path from one fixation to the next. Search mode can now be invoked to 

determine the presence of the memorized object in another image. 

4.6   Search/Recognition 

Figure 18 shows the model configuration during search and recognition. In the search 

task, a new image is presented to the model, and a saccadic scan of the image is performed. 

It is important to note that calculation of saccadic targets during this search process 

is performed identically as during memorization.   One should expect, then, that if the 

2Though selection of this number is somewhat ad hoc, it is primarily dependent on the size of the object 
to be memorized relative to the size of the visual FOV. Sufficient fixations must be made to memorize 
enough of the object to recognize it during a subsequent search. 
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Figure 17.      Vision Model in Memorization Mode. 

memorized object/scene is present in the new image, a saccade will eventually produce a 

fixation at a point that was selected during memorization. 

At each fixation, the visual field is again constructed and the edge features extracted, 

but rather than simply saving the data, this feature matrix is compared (via a Minkowski 

distance metric with parameter 2) with each of the feature matrices obtained during mem- 

orization, producing an error measure S for each matrix: 

£m   —    I        / ,      \ti-current\xiV)      ^m\x^y)\ 
\(x,y)eHm 

(11) 

where Hcurrent is the feature matrix extracted from the current FOV, and Hm is the feature 

matrix extracted during the mth fixation of the memorization process. 

If an error value for any of the memorized FOVs falls below a specified threshold, 

the hypothesis is formed that the object/scene is present in the new image. At this point 
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Figure 18.      Vision Model in Search/Recognition Mode. 

recognition mode is invoked, and the sequence of saccades recorded during memorization 

are calculated (with respect to the current fixation and center edge orientation) and re- 

peated over the new image. At each fixation, the error between the current FOV and 

the corresponding memorized FOV is calculated, and if the mean of the errors is below a 

second error threshold, a new instance of the object/scene is recognized; if the expected 

features are not found, the model reverts to search mode. The second threshold is set 

higher than the first (for the trials reported in Chapter V, the second threshhold was set 

20% higher than the first) to increase robustness to occlusions or distortions that may occur 

at fixations about the new image. If the image has been fully explored with no discov- 

ery of the object/scene, the search is terminated with the conclusion that the memorized 

object/scene is not present. 
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4-7   Summary 

In this chapter SCAN-IT, a behavioral model of human vision was introduced and 

described in detail. In the next chapter, experimental trials are performed using SCAN-IT 

as a recognition engine. 
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V.   Experimental Results using SCAN-IT 

5.1    Introduction 

The experimental trials were designed to demonstrate the utility of SCAN-IT in ob- 

ject memorization/recognition tasks. To do so, a building-block approach was used, start- 

ing with a relatively simple problem space, and advancing through increasingly complex 

realms. For each of the six sets of trials performed, a selected object was first memorized 

by SCAN-IT via a series of saccades. That object was then searched for within a target 

image, the characteristics of which could be affected by the following variations: 

• Object Presence: The memorized object could be present or not in the target image. 

• Rotation: If present, the memorized object could be subject to rotational variations. 

• Scale: If present, the memorized object could be subject to scale variations. 

• Background: The background of the target image could be benign (blank) or com- 

plex. If complex, the background could contain distractors spatially similar to the 

memorized object. 

By creating target images with varying characteristics as just described, the following 

capabilities can then be demonstrated: 

• Fundamental memorization, search, and recognition/rejection capabilities. 

• Ability to correctly recognize/reject: 

- simple, segmented, black and white (B & W) objects in an image containing 

similar B & W objects 

- gray-scale objects in complex backgrounds not containing any objects spatially 

similar to the memorized object. 

- gray-scale objects in complex backgrounds containing objects spatially similar 

to the memorized object. 

- B & W objects in backgrounds containing a mixture of B Sz W and gray-scale 

objects 
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— gray-scale objects in backgrounds containing a mixture of B &: W and gray-scale 

objects. 

• Ability to fuse individual recognition decisions to correctly recognize specified com- 

binations of B &; W and gray-scale objects. 

Section 5.3 introduces extensions to SCAN-IT that will solve performance shortfalls 

found during the experimental trials. A context-based methodology will be applied to the 

recognition algorithm that will be seen to improve accuracy in the problem environments 

examined here. 

5.2   Experimental Setup and Results 

Six separate sets of experimental trials (for a total of 453 individual trials) were 

performed to address the capabilities listed in the previous section, with the goals and 

conditions of each set summarized in Table 1. The Object column specifies the object 

or class of object that was memorized for the particular set of trials, while the Search 

Images column lists the contents and type of target images to be searched. 

One should note that two separate measures will be important in measuring perfor- 

mance in these memorization/recognition tasks: Sensitivity and Specificity. Sensitivity is 

defined as the True Positive rate, or the rate at which SCAN-IT correctly recognizes a 

memorized object when it is presented for search. Specificity, on the other hand, is defined 

as the True Negative rate, the rate at which an image not containing the memorized object 

is correctly rejected. Because both of these measures are important, it is appropriate that 

the test cases be balanced to provide an approximately equal number of trials to each of 

the object-present and object-absent classes. This was accomplished for the experiments 

presented here by putting all image variations (scale and rotation variants) containing the 

memorized object in one collection, and all target images not containing the object in 

another. An equal number of target images (or as close to equal as practical) were then 

randomly selected from each collection for testing. This balanced testing provides more 

meaningful results than simply testing all possible target combinations. 
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Table 1.      Experimental goals and conditions 

Trial 

1 

Purpose 

Demonstrate   fundamental   memo- 
rization and recognition capability 
Demonstrate capability to correctly 
recognize or reject B &: W objects 
among similar B &; W objects 
Demonstrate capability to correctly 
recognize or reject gray-scale objects 
among dissimilar gray-scale objects 

Demonstrate capability to correctly 
recognize or reject gray-scale objects 
among similar gray-scale objects 

Demonstrate capability to correctly 
recognize or reject B &: W objects 
and/or gray-scale objects among 
mixed gray-scale and B & W objects 

Object 

B k W text 
(word) 
B & W text 
(word) 

Gray-scale 
segmented 
faces 

Gray-scale 
segmented 
faces 

Gray-scale 
cars 
B & W text 
(words) 

Gray-scale 
objects 

Search Images 

B & W text (word) on 
blank backgrounds 
B k W text (sen- 
tences) on blank back- 
ground 
Gray-scale image from 
which face was seg- 
mented. No other 
faces in the image 
Gray-scale image from 
which face was seg- 
mented. Other faces 
present in the image 
Gray-scale mosaic of 8 
similar cars 
Image containing both 
B & W text and gray- 
scale objects 

Image containing both 
B & W text and gray- 
scale objects 

The target variants were produced by rotating and scaling the target images to 

produce a total of 8 variations of each image. Four rotational variations were used, 0, 

30, 90, and 180 degrees, and each of those variations was subjected to two of three scale 

factors: 1 (for all trials), 1.5 (for the first four sets of trials), and 0.75 (for the last two sets 

of trials). As stated in the previous paragraph, target images were randomly drawn from 

these variants to avoid producing results showing bias toward (or against) any particular 

rotation/scale combination. Appendix A shows the objects and original (non-rotated, non- 

scaled) target images used for all trials reported on here. Selected examples of the target 

image variants are also provided in that appendix. 

Because the final set of experimental trials performed here combines the functional- 

ities demonstrated in each of the five previous sets, only the results from that experiment 
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will be discussed in detail in the body of this document.  Only the setup, results, and a 

brief discussion will be given for the first five trials. 

5.2.1 Trial Set 1: Fundamental Capabilities. This case demonstrates that SCAN- 

IT can memorize, search for, and recognize simple objects under the most benign condi- 

tions. Black text on a white background provides for a simple object with no need for 

segmentation. Searching for this text in a target image that similarly consists of black text 

on a white background (where that text may or may not be the same as that memorized) 

should put little stress on the system, but will show basic capabilities in a quite straight- 

forward way. Demonstrations of robustness to scale and rotational changes will also be 

shown here. 

The text objects used for this set of trials were the following five words: 

the    rain    in    Spain    falls 

Each of these words was memorized in turn, and then tested against a selected sample 

from the collection of all words and their variants. To balance the testing, each word was 

tested against six variants of itself, and six variants of all the other words. This resulted 

in a total of 30 Sensitivity trials and 30 Specificity trials. 

Figure 19a shows an example of one of the words to be memorized, Figures 19b 

and 19c show two of the target images containing the memorized word, and Figure 19d 

shows one of the non-object images. For each trial, the desired object was memorized 

via a sequence of four fixations, and SCAN-IT was allowed 25 saccades over each target 

image to determine the presence of the memorized word. Figure 20a shows the saccadic 

path obtained during object memorization, and Figure 20b shows the path taken during 

successful recognition of one of the target variants. The 25 fixations accomplished over an 

unfamiliar target (the word "rain") are shown in Figure 20c. Note that fixations have 

been made to points outside the visible text edges (points a biological system would not 

normally saccade to), but this is simply an artifact of the penalty region as described in 

Section 4.4. Recall that after every fixation, a penalty is applied to an area surrounding the 

fixation point to prevent too rapid a return to that area, thus permitting a more thorough 

exploration of the target image in a smaller amount of time.  This penalty is allowed to 
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Figure 19. a) One of the words to be memorized, b) a rotational variant of the word, 
and c) a scale and rotational variant of the word, d) A rotational variant of 
a non-memorized word. 

decrease over time (measured in number of saccades) to allow later exploration within 

that region. In the case of single word search as shown here, the total penalized region 

built over several saccades is large enough to virtually eliminate any edge attraction over 

the text itself, only leaving the small Gabor filter responses at distant locations to act as 

attractors. As can be seen, though, those saccades are uncommon, and only occur here 

because the image being searched is so small and simple in content. This effect was even 

more pronounced on the smaller words, but did not affect recognition results. 

Table 2 shows the results from the 60 trials, with the following terms defining the 

performance measures used (the same terms will be used for all remaining trials as well): 

• True Positive (TP): Target correctly identified as containing memorized object. 

• True Negative (TN): Target correctly identified as not containing the memorized 

object. 
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Figure 20. a) Saccadic path obtained during object memorization, b) Saccadic path 
taken during successful recognition of target variant, c) Search path for the 
memorized object in a target image not containing the target 

• False Positive (FP): Target incorrectly identified as containing the memorized 

object, when in fact it did not. 

• False Negative (FN): Target incorrectly identified as not containing the memorized 

object, when in fact it did. 

• Sensitivity (SENS): The True Positive rate. 

• Specificity (SPEC): The True Negative rate. 

Table 2.      Trial 1 Results 

TP TN FP FN SENS SPEC 
30/30 25/30 5/30 0/30 100 % 83.3 % 

SCAN-IT was thus successful in recognizing every instance of the memorized word, 

but did not appear to be quite as successful in correctly rejecting non-memorized objects. 

This is somewhat misleading, however, as four of the five recognition 'errors' occurred 

as SCAN-IT was examining the words rain and Spain for the presence of the word in. 

Indeed, the last two letters of each target word were correctly recognized as matching the 

memorized word, leading to an actual specificity rate of 97 %. 

This was a set of simple trials to show fundamental memorization and recognition 

capabilities, but occurred in a very simple problem domain (recognizing a single word in 
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an image containing a single word). The next set of trials increases the complexity of the 

problem by increasing the size of the search space (introducing target images with multiple 

words). 

5.2.2 Trial Set 2: Word Recognition in Sentences. For these trials, the same 

words were memorized as in the first, but the search complexity was increased by using 

complete sentences as the target images. The process of detecting a specific word in a 

collection of text is sometimes known as word spotting or keyword spotting [36,47]. 

Figure 21 shows the three sentences used for these trials. 

the rain in Spain       the Maine rain This weather 

falls mainly falls plainly can grate on 

in the plains in east Wayne one's nerves 

Figure 21.      The three sentences serving as the base target images for the second set of 
trials. 

Note that the words the, rain, in, Spain and falls are all present in Sentence 1 (i.e., 

all of the memorized words are present), the, rain, in, and falls are present in Sentence 2 

(four of the memorized words are present), and none of the memorized words are present 

in Sentence 3. By creating the target variants as described previously, sufficient target 

images were randomly selected to test 31 object-present cases and 29 object-absent cases. 

SCAN-IT was allowed 30 saccades to determine the presence of the memorized word in 

the sentence. Figure 22 shows an example of one of the memorized words, a succesful 

recognition of the word, and the search path by SCAN-IT over a target image that did 

not contain the word. The dashed lines in Figure 22b and c indicate the search path prior 

to recognition (where in 22c the memorized object was not found). The results from these 

trials are listed in Table 3. 
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Figure 22. a) Memorization scan of the word falls, b) Successful recognition (dashed 
line indicates the search path performed by SCAN-IT), c) Search path for 
the word falls in a sentence not containing the word 

Table 3.      Trial 2 Results 

TP TN FP FN SENS SPEC 
28/31 23/29 6/29 3/31 90.3 % 79.3 % 

SCAN-IT was generally successful in recognizing instances of the memorized objects, 

but again the Specificity results were not quite as positive. Analysis of the data revealed 

that two of the six False Positives, as with the cases in the first set of trials, were actually 

detection of the memorized word as part of another word (in this case, the was found 

within the word weather). A more accurate Specificity value to report would probably 

be 85.2%. Two more of the False Positives resulted from the detection of the word rain 

in the rate portion of grate. Other failures were attributed to either the limited number 

of saccades permitted for object detection or to a detection threshhold not optimized to 

this problem set (indeed, the same detection threshhold was used throughout the testing to 

demonstrate the utility of SCAN-IT in an arbitrary environment). Section 5.3 will propose 

a solution to the threshholding problem and the saccade limitation. 

The next step in the evaluation process was to test SCAN-IT against more interesting, 

gray-scale objects and target images. 
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5.2.3 Trial Set 3: Memorization/Recognition of Faces in Complex Backgrounds. 

For these trials, five faces were extracted from gray-scale images to serve as the memorized 

objects. After memorization of each segmented face via eight fixations, SCAN-IT was 

allowed to scan the selected target variants for 30 saccades to determine its presence. 

Figure 23 shows two of the five images from which the faces were extracted, as well as one 

of those segmented faces. 

Figure 23.      a) and b) Two of the images from which the faces for Trial Set 3 were ex- 
tracted, c) One of the extracted faces to be memorized. 

Figure 24 shows examples of the memorization scan over a face, a successful recog- 

nition of that face, and a 30-saccade scan of an image not containing the memorized face. 

The final results from the 60 trials performed are provided in Table 4. 

Figure 24. a) Memorization scan of one of the faces used for Trial Set 3. b) Successful 
recognition of the memorized face, c) Search of a target image not containing 
the memorized face. 
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Table 4.      Trial 3 Results 

TP TN FP FN SENS SPEC 
30/30 30/30 0/30 0/30 100% 100% 

Note that for the first time a perfect recognition score was obtained. This would 

seem counterintuitive at first, as the images used for these trials are of higher complexity 

than those containing only simple black and white letters. However, the added complexity 

is actually one of the major reasons for the superior performance. Recall that specificity 

was the problem in the first two trials; that is, mistakes were made in believing a word 

was present that actually was not. But those B k W word objects, consisting primarily of 

interconnected straight lines and predictable curved lines, do not have nearly the random 

variability found in a natural image as used for these trials. Thus the discriminability 

between objects in gray-scale, natural images is likely to be higher than in a structured, B 

&: W environment, a conclusion that certainly appears to be supported here. In addition, 

the segmented faces memorized here are larger (in proportion of the total image size) than 

the words used previously, allowing more information, and more useful information, to be 

memorized. 

The next step, then, is to evaluate the performance of SCAN-IT in a gray-scale 

environment again, but with a more difficult target. In the next set of trials, faces will 

again be memorized, but the spatial area of those faces will take up a smaller proportion 

of the total image, and additional, possibly similar, faces will be included in the target 

images to act as distractors. 

5.2.4 ?Vmf Set 4: Memorization/Recognition of Faces in Complex Backgrounds 

Containing other Faces. In the previous set of trials, the face extracted from each 

image was the only object in the image with face-like qualities. For the trials in this fourth 

set, faces were extracted from images containing multiple faces, with the goal of determin- 

ing SCAN-IT's ability to ignore distractors similar to the memorized object. The original 

Gatlin image from the Matlab© development environment was divided into four different 

images, each containing three faces (the original image and two of those sub-images are 
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shown in Figure 25). Individual faces were then extracted from these sub-images, memo- 

rized (via a sequence of five fixations), and searched for among the target variants. Because 

of the increased complexity of these target images, the number of saccades SCAN-IT was 

allowed to accomplish in its search was increased to 60, but no other parametric changes 

were made. 

Figure 26 shows examples of a memorized face, a successful recognition of that face, 

and a search of a target image not containing the face. The results from the fourth set of 

trials are presented in Table 5 
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Figure 25.      The original Gatlin image and two of the six sub-images used for Trial Set 4 
(from the Matlab© development environment). 
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Figure 26. a) Memorization scan of one of the faces used for Trial Set 3. b) Successful 
recognition of the memorized face, c) Search of a target image not containing 

the memorized face. 

Table 5.      Trial 4 Results 

TP TN FP FN SENS SPEC 
29/33 32/32 0/30 4/30 87.9 % 100% 

Specificity was again perfect for this trial set, but Sensitivity decreased from the 

prior trial. Analyzing the results showed that of the four False Negatives, two appeared to 

be caused by a large portion of the face being cropped by the 30 degree rotation process 

(because the target variants were randomly chosen, unless a majority of the face was cut 

off, the image remained eligible for testing). In the other two cases, even after 60 saccades 

the memorized face had been saccaded to only a few times, and never to memorized fixation 

points, so no recognition was made. Because the system was designed to fully explore an 

image given a sufficient number of saccades, confidence remains high that those faces would 

have been detected if the saccade number had been set higher 1. However, limitations on 

the number of saccades necessary to discover a memorized object is an interesting and 

important quantity, so it was decided not to perform any optimization just to improve the 

results. This issue will be further addressed in Section 5.3 

1lb provide anecdotal evidence that this is indeed true, SCAN-IT was allowed to continue the search 
process on one of the False Negative items, and at the 75th fixation the face was properly recognized. 
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The next set of trials moves to even more complex gray-scale objects, cars set among 

multiple similar car distractors. 

5.2.5 Trial Set 5: Memorization/Recognition of cars in Complex Backgrounds Con- 

taining other Cars. For the next increase in target image complexity, a collection of 

individual cars from the Corel® Image CD collection formed the collection from which 

all objects were selected. A total of 13 cars were used for these trials, of which five were 

randomly selected to to be memorized. Ten image mosaics, each consisting of eight of the 

13 cars, were then created in such a manner that each memorized car was found in exactly 

five of the mosaics. The order of the individual cars within each mosaic was also randomly 

determined, and to form the complete collection of target images, the same four rotational 

variants were used as in the previous trials, but the scale factor used was 0.75 instead of 1.5. 

In other words, the scaled images for these trials (and all subsequent trials) were smaller 

than the originals. Figure 27 shows two of the individual cars used and two of the mosaics 

constructed for testing.   A total of 100 trials were performed using these mosaics, with 

Figure 27.      a) Two of the individual cars and two of the car mosaics used for Trial Set 5. 
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individual cars memorized via a 5-fixation sequence and SCAN-IT permitted 60 saccades 

to locate a memorized car in a mosaic. Figure 28 shows examples of a memorized car, a 

successful recognition of that car, and a search of a target mosaic not containing the car. 

The results from the trials are shown in Table 6. 
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Figure 28. a) Memorization scan of one of the cars used for Trial Set 5. b) Successful 
recognition of the memorized car. c) Search of a target mosaic not containing 
the memorized car. 

Table 6.      Trial 5 Results 

TP TN FP FN SENS SPEC 
45/50 49/50 1/50 5/50 90% 98% 

As in the previous set of trials, excellent Specificity was obtained, but Sensitivity 

seemed not quite as robust. Data analysis showed that four of the five False Negatives 

were obtained when testing just one of the memorized cars against the target variants. 

In each of the failures with that particular car, points on the car were fixated at most 

twice, and in two cases the car was never fixated on during the search process. Thus, it is 

again believed that increasing the number of saccades permitted would have increased the 

performance, but not doing so provides more insight into potential limitations of SCAN-IT. 

In the next section, a detailed discussion is provided on the conduct of and results 

from trial set number six. 
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5.2.6 Trial Set 6: Memorization/Recognition of Text and/or Cars in Target Images 

Comprised of Text and Cars. The final set of experimental trials builds on the function- 

alities demonstrated in the five previous sets to provide a comprehensive demonstration 

of SCAN-IT's ability to memorize and recognize arbitrary text/car objects in arbitrary 

target scenes. Additionally, a simple fusion scheme will be implemented that will solve the 

problem of concurrently recognizing multiple objects within a single target image. 

Objects to be memorized included both text (white text on a dark background) and 

the same cars as used in the previous set of trials, and the target images were each a 

combination of text and one of five of the cars. The final goal of these trials then will be 

to correctly recognize a combination of specified text as well as a specified car. Figure 29 

shows two of the ten target images used. 

Figure 29.      Two of the target images used for Trial Set 6. 

The group of objects to be memorized consisted of the five different cars and the four 

textual phrases 

"best in the world" 
"costs a lot" 
"fail each and every" 
"task asked of it" 
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The first two phrases are from the sentence "This is the best automobile in the world, but 

costs a lot of money." The second two are from the sentence "This automobile will fail 

each and every task asked of it." 

It is interesting at this point to observe exactly what is being examined during the 

memorization process. Figure 30 shows the portions of one of the cars memorized after 

one fixation, three fixations, and all eight fixations. This is a typical result from the 

memorization process, and one notes that at the end of the memorization process a vast 

majority of the object of interest has been examined. This is the ideal result, and should 

lead to the best recognition performance with minimum false alarms (False Positives). 

Figure 30.      Portions of a car examined during the memorization process after a) 1, b) 3, 
and c) 8 saccades. 

108 experimental trials were conducted against the target images (where for each 

trial, the target image was randomly selected from the pool of 80 available variants), with 

each object memorized via eight fixations, and SCAN-IT allowed 60 saccades to find the 

object if present. Figure 31 shows examples of memorized objects, successful recognition 

of those objects, and search of target images not containing the objects. The top row of 

figures shows testing with a car object, and the bottom with a text object. 

Processing the individual car/text searches in parallel allows for the identification of 

target images that contain both a specified text object and a specified car object. One 

might imagine desiring the selection of images containing a picture of one's favorite car 

and a textual caption describing some quality of the car. 20 different combinations of 

text and car existed (four text objects and 5 car objects), and each of those combinations 

was tested against. To balance the testing, 20 Specificity cases were also tested, where the 

specific text/car combination was not present in the target image. For this experiment, the 
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fused recognition decision was a simple logical ANDing of the individual object recognition 

decisions. 

Results from the individual object trials are given in Table 7.   Table 8 gives the 

results from the fused decision testing. 
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Figure 31. a) and d) Memorization scan of one of the objects used for Trial Set 6. b) 
and e) Successful recognition of the memorized object, c) and f) Search of a 
target image not containing the memorized object. 

Table 7.      Trial 6 Results 

TP TN FP FN SENS SPEC 
53/54 51/54 3/54 1/54 98% 94.4 % 

Results from the memorization and search/recognition of either textual or gray-scale 

objects show that SCAN-IT is indeed flexible enough to search arbitrary scenes for these 

objects. Additionally, the perfect fused recognition decisions show that SCAN-IT provides 
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Table 8 Trial 6 Fusion Results 

Fused TP Fused TN Fused FP Fused FN SENS SPEC 
20/20 20/20 0/20 0/20 100 % 100% 

sufficient information to allow the combination of individual decisions to select target 

images containing multiple desired objects. 

the system is quite capable of combining individual decisions to select target images 

that contain multiple desired objects. 

Both Sensitivity and Specificity for the individual cases are quite good, but it would 

be instructive to determine the reason for the recognition failures that did occur. The 

three False Positives resulted while textual phrases were being sought in the target images; 

Figure 32 shows the search scanpaths and false recognition in each of those cases. The 

top row shows the mis-identification on the target image and the bottom row shows the 

original memorization of the word object. 
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Figure 32. False Positive results from Trial Set 6. The top row shows the search path 
and false recognitions, and the bottom row shows the original memorization 
of the object after 8 foveations. 

Two of the errors resulted while searching for the phrase costs a lot (Figures 32a 

and b), in which SCAN-IT found the object at the same location in the same sentence 

on two different target images.  The last occurred when the phrase best in the world 
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was mistakenly found in the same sentence. It is interesting that the specificity errors all 

occurred while searches for text object were being performed. While the similarity of the 

recognized text to the memorized phrases is not immediately apparent to the naked eye, 

it can be argued that the same explanation provided in the section describing Trial Set 

number three applies here. That is, the restricted nature of the text (straight lines, curves 

with constant radius, etc) results in less discriminability than is normally found in natural 

images. Indeed, post-experimental analysis of the data revealed that in each of these 

False Positive cases, the recognition error (the Minkowski distance between the memorized 

object and the recognized object) was higher (about 10 % on average) than in any of 

the cases in which an object was correctly recognized. This means that the recognition 

threshhold of SCAN-IT could have been tuned to provide perfect Specificity results on this 

set of trials. However, it is quite often more important to not miss true occurrences of a 

desired target than it is to incorrectly identify the target as being present (that is, True 

Positives are often more important than False Positives). For example, a bank using an 

automated system to provide services may prefer to have a higher False Positive rate in 

order to avoid wrongly refusing service and alienating customers. SCAN-IT's threshhold 

is set to meet that condition here, but a solution to the threshholding problem is proposed 

in Section 5.3 that will produce recognition decisions based on contextual information in 

the target image. 

Figure 33a shows the memorized scanpath of the car object for the one False Negative 

case, while 33b shows the search scanpath accomplished during that trial. The fundamen- 

tal reason for non-recognition in this case is obvious: a fixation was never made to the 

memorized car in the target image. This is an issue that can be addressed in several ways. 

First, because SCAN-IT is guaranteed to fully explore any image given sufficient time 

(sufficient number of saccades), the number of search saccades allowed could be increased 

(as seen in Sec 5.2.4, allowing an increased number of search saccades indeed resulted in 

correct recognition of a memorized object not previously found). Section 5.3 will address 

this issue by proposing extensions to SCAN-IT that will avoid the whole issue of specifying 

saccade limits. 
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Figure 33.      False Negative result from Trial Set 6. a) shows the memorization of the car, 
and b) shows the search scan path. 

The parameters of the inhibition imposed on the region surrounding a fixation could 

also be adjusted to alter the frequency with which an area is revisited. It was noticable 

in all of the experimental trials conducted over the combination text/image targets that 

most fixations were made to the text portions, and generally only after these regions were 

well explored did the focus of attention move to the car. This is a direct result of the 

stronger edge gradients (and hence stronger attraction) produced by the B &: W text. By 

increasing the size of the penalized region and/or by increasing the amount of time it takes 

the penalized region to recover to its original values, fixations will tend to move to the car 

object after fewer saccades. Once SCAN-IT is given the opportunity to directly explore the 

memorized car, it should be rapidly recognized, as is supported by all the results presented 

here. 

However, SCAN-IT was designed to perform in an arbitrary environment, and the 

parameters applied are thus somewhat of a compromise between working best for simple 

B &: W text and for complex gray-scale imagery. Methods do exist to detect text within 

imagery, generally based on textural and stroke cues (see, for example, [47,76,80]), and if 

one knows in advance that the object being searched for is text, then SCAN-IT could be 

modified to use these techniques. This, though, would detract from the generalization cur- 

rently achieved. With the present parameters, excellent Sensitivity is already achieved for 
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both types of memorized objects, so additional optimization is considered neither necessary 

nor desirable to increase accuracy on this particular (randomly selected) test set. 

The following section provides a tabular summary of the results from all the experi- 

mental trials conducted. 

5.2.7   Summary of Experimental Results.       Table 9 consolidates the results from 

all six experimental trials of SCAN-IT. As discussed in the previous sections, for different 

Table 9. Summary of Experimental Results 

Trial Set TP TN FP FN SENS SPEC 
1 30/30 25/30 5/30 0/30 100 % 83.3 % 
2 28/31 23/29 6/29 3/31 90.3 % 79.3 % 

3 30/30 30/30 0/30 0/30 100% 100 % 

4 29/33 32/32 0/30 4/30 87.9 % 100 % 

5 45/50 49/50 1/50 5/50 90% 98% 

6 53/54 51/54 3/54 1/54 98% 94.4 % 

Total 215/228 210/225 15/225 13/228 94.0 % 93.0 % 

types of memorized objects and target images Sensitivity or Specificity results may have 

been slightly better, but over all 453 trials the two performance measures are quite closely 

matched. The successful performance of SCAN-IT under experimentally controlled condi- 

tions has been shown, but it has also been pointed out that some shortfalls may exist in 

the parameterization balance between good Sensitivity and good Specificity performance 

in the general case. Thus, in the next section a technique is introduced that will obviate 

the need to spend time determining the proper recognition threshhold for a given problem 

set. 

5.3    Using Context to Solve the Sensitivity-vs-Specificity Problem 

The problem of proper threshholding is a common one in pattern recognition tasks [15, 

58,65,73]. Determination of the discriminant boundary that will appropriately separate 

multiple classes such that both Sensitivity and Specificity values meet the desired (and 

contradictory) goals is not always possible.  What this means is class discriminability is 
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almost always a compromise, where a balance is reached between correct classification and 

correct rejection. This concept can be illustrated by the simple example shown in Fig- 

ure 34.  Given an ensemble of data belonging to either class x or class o (as determined 

Discriminant 
Boundary 

Feature 1 

Feature 1 

b 

Feature 1 

Figure 34. a) Discriminant boundary constructed to separate two classes of data to some 
precision determined by the designer, b) Example of data points perfectly 
separated by the boundary, c) Example of data points producing False Pos- 
itives. 

by a function of Feature 1 and Feature 2), some constructive technique can be used to 

build a discriminant boundary that will separate data of those classes to some arbitrary 

precision. In Figure 34a, a simple, piecewise-linear discriminant has been constructed that 

will separate the data to a precision that is satisfactory to the designer of the classifier. 

Given the data points shown in 34b, classification performance would be perfect, with the 

discriminant boundary perfectly separating the two classes. Figure 34c, however, shows 

data points that would not be properly classified by the classifier.  A data point that in 
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actuality belongs to class x, but lies to the right of the discriminant boundary, will be 

declared to belong to class o, generating a False Positive if one is searching for objects of 

class o. Likewise, any data points belonging to class o but lying to the left of the boundary 

will also generate False Positives when searching for objects of class x. Thus, construction 

of the discriminant boundary is important, but given that it can be virtually impossible to 

make it perfect (especially in the case of incompletely representative data, which is usually 

the case), often ends up being a compromise between producing no False Positives and 

producing some acceptable rate of False Positives. 

In the case of SCAN-IT, the compromise is imposed primarily by the recognition 

threshhold, which should allow correct recognition of memorized objects while at the same 

time rejecting images that do not contain the object (i.e., separate the classes of object- 

present and object-absent). As seen in the experimental trials, there are cases where 

Specificity has been negatively affected (False Positives have occurred because of a too- 

high recognition threshhold), and in the following paragraphs a solution is proposed that 

will be seen to remedy the problem. This solution will be fully generalizable to a wide 

variety of pattern recognition problems and will not adversely affect the Sensitivity of the 

classification system. 

The general idea is to use image context to determine whether or not a declared 

recognition is correct. To collect this contextual information, the operation of SCAN-IT 

can be slightly altered. The upper limit on number of search saccades allowed will be 

removed, and the decision of object-present or object-absent will no longer be made by 

simply achieving a Minkowski distance below the recognition threshhold. Instead, when 

that threshhold is breached (for the remainder of this section, the term possible detection or 

simply detection will be used to indicate this situation), the distance value will be recorded, 

but no recognition decision will be made; SCAN-IT will be allowed to continue searching. 

One should note at this point that a context-based approach will not be amenable 

to all problems. In cases where time (measured in actual time or in CPU cycles) is at 

a premium, it may be more desirable to use SCAN-IT as originally designed, establish 

as good a recognition threshhold as one is able (perhaps based on training cases with 

sample objects and sample target images), and declare successful recognition when that 
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threshhold is breached. However, if the problem environment is such that more time is 

available to undertake additional processing, the contextual recognition described in the 

following paragraphs will improve the recognition results. In other words, the application 

of SCAN-IT can be completely generalizable based on the time restrictions under which 

one is attempting to solve a problem. 

After some user-specified number of possible detections2 (instances of possible ob- 

ject recognition), the search process will be stopped and the resulting error (Minkowski 

distance) data will be examined. Recall that a fundamental assumption behind SCAN- 

IT's functionality is that features generated from a memorized object will be substantially 

different from those generated by any other object; i.e., the error will be small when a 

memorized object is scanned, and large when any other object is scanned. If the error 

values recorded over the possible detections are closely clustered (the variance is small), 

probability is high that a correct instance of recognition did not occur during any of the 

detections. These error values, then, can be thought of as describing the memorized object 

within the context of nor&-object space within the target image. If, however, there is a 

high variance among the values, where one or more of the errors are substantially lower in 

value than the rest, probability is high that those smaller errors correspond to instances 

of correct recognition. 

To test this hypothesis, the collection of a balanced set of True Positive and False 

Positive decisions was desired. Three FPs were generated during the final set of experi- 

mental trials, but to provide additional data points, the recognition threshhold was raised 

and the trials repeated, generating more FPs. Because the text objects (as opposed to 

the car objects) presented the most Specificity problems, only data obtained testing with 

memorized text objects was used here. For each memorized word, two target images were 

selected that had led to FP results with the non-modified implementation of SCAN-IT 

(including the three cases that had occurred in the final trials), and two that had led to 

2That number will primarily depend on the number of fixations with which the original object was 
memorized; more of these detections should be allowed than there were fixations, to ensure some saccades 
are made to regions not originally memorized 
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TP results; a total of 16 targets, then, was to be tested against with the extended version 

of SCAN-IT. 

After modifying SCAN-IT as described above, eleven possible detections were recorded 

from each of the object-absent cases, and eleven from the randomly selected set of object- 

present cases. If the contextually-based discrimination concept is sound, one would expect 

the detections for the object-absent cases to have tightly clustered error values. For the 

object-present cases, on the other hand, one would expect to find one or more error values 

that are significantly less than the others (which will correspond to the instances of correct 

recognition - True Positives). 

Figure 35 shows that this is indeed the case. Data for each row corresponds to exactly 

one of the text phrases tested against, with the plot on the left showing results from testing 

against the object-absent cases (the memorized object was not in the target image), and 

the plot on the right showing results from testing against the object-present cases (the 

memorized object was present). Each plot shows the error values (Minkowski distances, 

vertical axis) obtained at each of the eleven possible detections for two separate trials, for 

a total of 16 trials shown in the eight plots. It is apparent that for the object-present trials 

(right plots), there is a much greater variability than for the object-absent trials, reflecting 

the fact that both true and false detections were recorded. 

Though the variability in recognition distances is evident in the plots, a quantitative 

method is still desired to determine which particular recognition instances will be consid- 

ered correct. Recall that the intent of this context-based decision scheme is to reduce the 

importance of the recognition threshhold, to instead rely on the relative distances between 

errors measured during multiple possible detections. But in the object-present cases, there 

is still no a priori knowledge of how many of those detections will be correct (or incorrect), 

so the obvious statistical measure of variance may not be the ideal one. Instead, a metric 

will be developed based on a different assumption: that error values close to the small- 

est error are likely to indicate an instance of possible object recognition. To define what 

close means, examine the relative distances between the maximum {Dmax) and minimum 

(Dmin) distance values recorded for a particular object over the 11 recognition instances, 
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Figure 35. Plots of Minkowski distances calculated for each recognition instance reported 
by SCAN-IT. Each row corresponds to one of the four text objects, for which 
two object-absent and two object-present cases were tested (the left and right 
plots respectively). 

and select a threshhold T midway between the two: 

J-   — J-'min "r 
J-'max       U\ max      -Lsmin (12) 

Thus, any detection producing errors less than or equal to T are assumed to be possibly 

correct, and any producing errors greater than T are assumed to be false. The statistical 

means of error values associated with each of these two classes can now be calculated as 

Dmax and Dmim as can tne distance AD between those two means for each memorized 
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object: 

Dmin = - E a       ' A = iD\D ^ T>' m =size(A) 

Ana* = ~ £ &       » S = ^ > T>' n =size(5) 
6GB 

AD = D max      -^min Dr, 

(13) 

(14) 

(15) 

In the equations above, m refers to the number of detections with error values less 

than or equal to T, and n to the number with error values greater than T. A simple 

graphical example of the calculation of these values is shown in Figure 36. Given the six 

error values (1, 3, 12, 13, 14, and 17) derived from six detections of a single object, Dmax 

and Dmin are determined, T is calculated per Equation 12, and Dmin, Dmax, and AD are 

calculated from Equations 13, 14, and 15. 
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Figure 36.      Graphical example of calculation of Dmax, Dmin, and AD for context-based 

recognition 

Figure 37 shows AD for the eight object-present cases (solid line) and the eight 

object-absent cases (dashed line). As can be seen, there is generally better than an order 

of magnitude greater distance between the two classes (no-object and possible-object) for 

the object-present cases than for the object-absent cases. Thus AI? serves as an excellent 

metric to decide whether a true recognition has in fact occurred (among the multiple 
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Figure 37.      Comparison of AD for the eight object-present cases (solid line) and the eight 
object-absent cases (dashed line). 

possible detections reported by SCAN-IT). The accuracy of the recognition threshhold is 

no longer of vital importance as long as it is between the minimum for the object-present 

cases and the maximum for the object-absent cases. Once the decision is made that at least 

one of the possible detections was correct, those detections belonging to the possible-object 

class (that is, those producing errors less than T) can be rank-ordered by the confidence 

that each detections is a True Positive. The detection producing the lowest error will 

produce the highest confidence, and that confidence will decrease as the error increases. 

One simple confidence measure that could be used is 

Ci = 
Dr, 

Di 
(16) 

where Cj is the confidence that detection i is a True Positive, Dmin is the minimum 

Minkowski distance produced by any of the detections, and Di is the Minkowski distance 

produced by detection i. 

To summarize and recap the extensions to SCAN-IT: first, the limit on maximum 

number of search saccades allowed is removed. The recognition scheme is altered such 

that when the recognition threshhold is breached, the Minkowski distance is recorded, 
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but the search is allowed to continue. Some set number of possible detections will thus 

be accomplished, with no decision yet on whether those detections are correct or not. 

Once those detections are accomplished, the error (distance) values will be examined, and 

a measure AD will be calculated that will provide information on the relative distance 

between the cluster centers of non-recognition and possible-recognition instances. If AD is 

greater than a loosely set threshhold, the conclusion is reached that the possible-recognition 

instances are actually each object-present cases with associated confidence based on the 

corresponding Minkowski distance. 

Recall that in the final set of experimental trials (text or gray-scale objects sought 

in combined text and gray-scale target images), three False Positives were produced. Im- 

plementing the modified SCAN-IT as described above, those trials were re-run, and using 

a final context threshhold of 0.006 (based on the values shown in Figure 37, all three cases 

were determined to in fact not produce any correct recognitions (AD values for the three 

cases were 0.0037, 0.0014, and 0.0013). In other words, Specificity for the trials was raised 

from 94.4 % to 100 % (Sensitivity remained unaffected at 100 %. Note that though a 

threshhold was still required, the value in this case could be much more loosely established 

because of the relatively large delta between AD for targets in the object-present class 

and AD for targets in the object-absent classes. Though only anecdotal results are pre- 

sented here, it is firmly believed that this characteristic will be found in any problem set. 

The concept of context-based recognition, then, can be generalized to any given problem 

environment. 

Though the context-based recognition scheme proposed here will improve Specificity 

performance of SCAN-IT, there is still a price to be paid. As mentioned in the beginning of 

the discussion, using this methodology will generally require a substantial increase in time 

and CPU activity. In environments that rely primarily on timeliness, using the original, 

non-extended SCAN-IT may be more appropriate. When time is not as critical, and 

when accuracy of results is more important, the extension of SCAN-IT into a contextual 

realm will be highly desirable. Additionally, as computers get faster and as the recognition 

algorithm is made more efficient, the cost will go down, making use of the extended SCAN- 

IT more palatable in any problem environment. 
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In the next chapter, SCAN-IT is applied to a real-world problem, retrieval of specified 

video imagery from within a video sequence. 
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VI.   Video Retrieval: A Real-world SCAN-IT Demonstration 

In the previous chapter, SCAN-IT's memorization, search, and recognition capabilities 

were shown experimentally, but it is also constructive to see its performance when applied 

to a real-world problem. The problem addressed here will be in the area of image retrieval, 

where SCAN-IT will be used to retrieve frames containing specified objects from video 

imagery. 

6.1    Introduction to Image Retrieval 

Living in the age of information has resulted in the generation and availability of 

vast stores of digital data. But though this data may be available, it is becoming more 

and more evident that tools for finding data of interest to a particular user, and ignoring 

irrelevant data, must be developed. In the case of textual data, search mechanisms already 

exist that can find specific tokens (words and phrases, for example), as well as relationships 

between tokens within a document (see [25,26]). 

A related task is the retrieval of digital imagery from large image databases (including 

video sequences), but search methods here are not nearly as straightforward or robust as for 

modern textual searches. Though textual tags can be linked with an image, the probability 

of a user selecting the proper words or word-combinations to retrieve every image of interest 

is small. A typical human being, on the other hand, has little or no problem recognizing 

images containing instances of some particular object of interest (for example, "Find every 

image containing an airplane."), and in fact seems to perform this task with ease. We 

appear to have an inherent capability to quickly and effortlessly find things that "look like 

Much research has been accomplished in the area of content-based image retrieval, 

with a variety of techniques used in the attempt to find the right images based on some 

measure of correctness or similarity. Most of these techniques involve extracting visual 

characteristics of objects within the image (e.g., texture [35,38,39,45,46,49,54], shape [1, 

22,51,52,54,69], and color [7,23,38,39,54,56,71]) and using various similarity metrics to 

compare sample images with a desired image. 
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Few retrieval methods, however, are based on biological systems, which is where 

SCAN-IT can play a role. Because SCAN-IT was designed to emulate (in some sense) 

certain characteristics of the human visual system, and because it has been shown to 

perform well in recognizing specified objects in arbitrary images, it is potentially well suited 

to image retrieval tasks. In the next section, the specific problem will be introduced, and 

SCAN-IT will be shown to be capable of solving the problem. 

6.2    The Problem: Finding Specified Video Imagery 

The tremendous quantities of video imagery available today (as well as the projected 

growth of production of such imagery) can cause problems if one desires access to only one 

small portion of it. Manually viewing the imagery in the hope of eventually finding the 

portion of interest is inefficient to the extreme, so a method is needed to automate that 

process. SCAN-IT will be used to provide that automation. 

One method that can be used to improve search efficiency is to convert a sequence 

of video imagery into a much smaller set of images that still capture the contents of the 

sequence. Such an idea was explored in the course of this research, where SCAN-IT was 

used to locate fiducial markers in one video frame, recognize the same markers in another 

frame, and use that data to co-register the frames. This process was accomplished for a 

sequence of frames, and then the contents of all frames were fused into a single output 

mosaic based on contrast characteristics of the human visual system. Details of that work 

can be found in Appendix B. Another approach to the video retrieval problem is to examine 

individual frames for the presence of some specified object or objects. That is the approach 

to be discussed here in this section. 

The specific problem domain to be examined here is a video sequence of a newscaster 

reporting a story. The goal will be to extract video frames from the sequence that contain 

the reporter, where the evidence of the reporter's presence will be given by both the 

face (face object) AND a caption containing the individual's last name (text object) l. 

Note that the requirement is not necessarily to locate every frame that contains those two 

Methods to extract text from within images do exist (for example, [47,76,80] but a single generalized 
tool for arbitrary text or objects is not currently available 
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attributes, but to locate at least one that does. Such a video marker is meant to lead the 

user to the proper section of the overall sequence. 

Examples of the frames used for this demonstration are shown in Figure 38, where 

38a shows the first frame in the sequence, 38b and 38c shows two intermediate frames, 

and 38d shows the last frame.   The entire video sequence was comprised of 425 frames, 

Figure 38. Frames from the video sequence used for demonstrating SCAN-IT. a) The 
first frame in the sequence, b) and c) Two of the intermediate frames, d) 
The last frame of the sequence. 

recorded at 15 frames per second, for a total length of just under 30 seconds. The sequence 

was broken up into 15 sub-sequences, each representing about a two second span of time. 

A sample frame was selected from each sub-sequence to test against, making for a more 

efficient search process. The assumption in this case, of course, was that the reporter and 
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the caption will be on-screen for at least four seconds, so the two-second sampling should 

capture at least one of those frames. 

The face and the caption from frame 5 were first memorized by SCAN-IT via six 

fixations (with the memorization scans shown in Figure 39a), and then the 15 target 

frames were selected for search. Contextually-based recognition as described in the previous 

chapter was applied for these cases, with 11 possible detections permitted for each target 

image, but no limitation on total number of search saccades. The distance metric AD 

was calculated as described in Section 5.3 for each object/frame combination (i.e., the 

memorized face versus each frame and the memorized text versus each frame), and the 

same loose threshhold applied as given there. The result was one frame meeting the 

object-present criteria for both face and text. The search for, and subsequent recognition 

of each object in that frame is shown in Figure 39b. 

■.. ■-^£->;'?-'::. "':■''[' 

Figure 39. a) Memorization of the face and last name of the reporter, each via a sequence 
of six scans, b) Subsequent recognition of the face and last name in a different 
frame. 

Subsequent analysis of the data showed that ten of the selected frames actually 

contained the reporter's face, seven of which were appropriately recognized by SCAN- 

IT (see Figure 40), and two of the frames contained the text, one of which was selected 

by SCAN-IT. All other frames were appropriately rejected.   It should be noted that in 
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Figure 40.      Correct recognition of the face object in Frames 40 and 87. 

this demonstration, the memorized face-object was not identical to the face-objects in 

the frames being searched. This is shown clearly in Figure 40, where the reporter has 

very different facial expressions (from each other and from the memorized face shown in 

Figure 39a, but was still correctly recognized by SCAN-IT. 

6.3    Conclusion 

This successful demonstration of SCAN-IT's recognition capabilities support the util- 

ity of the model in a real-world environment. It should be stressed that this was purely 

an anecdotal demonstration, without the accompanying tabular data or in-depth analyses 

produced for the experimental trials of Chapter V. Instead, this was intended to give the 

reader a better feel for the manner in which SCAN-IT can be applied to actual, messy 

problems. 

The next chapter will provide a summary of the research accomplished for this dis- 

sertation and will review the contributions made. 
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VII.   Conclusion 

1.1 Research Contributions 

The primary objective of this research was to develop a new computational vision 

model based on physiological and behavioral characteristics of the human visual system. 

Such a model should be capable of detecting, identifying, and verifying the presence of 

arbitrary objects within arbitrary visual scenes and video sequences. The objective was 

successfully met with the development of SCAN-IT, Saccadic Control for Active Neural 

Identification of Targets. The results from this research can be summarized by the following 

contributions: 

1. A new model of the human visual tract was introduced that emulates the function 

of biological neurons in the Retina, Lateral Geniculate Nucleus, and Primary Visual 

Cortex. 

2. A view-based standardization process was developed that simulates the physiological 

characteristics of contrast sensitivity, contrast normalization, and cortical magnifica- 

tion to project an arbitrary visual field of view into a standardized, simulated cortical 

map. 

3. A scanning algorithm was developed that in some sense emulates the saccadic behav- 

ior of the human visual system, permitting complete exploration of arbitrary visual 

scenes. 

4. The characteristics in 1-3 above were synergistically combined to produce a recog- 

nition model that was shown to be capable of recognizing arbitrary objects within 

arbitrary scenes. 

5. A context-based recognition paradigm was introduced that solves the general thresh- 

olding problem encountered in pattern recognition processes. 

1.2 Future Directions 

The contributions outlined above provide a firm foundation for future work on 

physiologically-motivated object detection.  Though SCAN-IT has been shown to be ef- 
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fective at memorization and recognition, areas exist which could be improved to increase 

performance, efficiency, and utility. 

• The capability to automatically adapt parameters to the type of object being mem- 

orized, as well as the type of target image being searched, would provide for a more 

efficient search and better Sensitivity and Specificity performance. For example, it 

was shown in the course of this research that SCAN-IT performed differently for 

text searches than it did for gray-scale object searches; the fixed parameters were 

established such that any arbitrary search produced acceptable performance. 

• Recognition capability will benefit from the development of a single-number quality 

metric that will define the similarity of any given detection of an object to the mem- 

orized object. The confidence measure produced by the context-based recognition 

methodology introduced in this research is a step toward that capability, but deter- 

mination of a context-threshold, though more easily established than the recognition 

threshold, is still required. 

• Saccadic activity is an area that merits further exploration. SCAN-IT uses a very 

simple attraction scheme to determine the fixation sequence, a scheme based pri- 

marily on the gradient intensity of edges within the Field of View. No attempt was 

made here to perform saccadic activity in the same manner as biological systems; 

thorough exploration of the visual scene was determined to be of greater value, and 

this goal could be accomplished with the relatively basic method employed here. 

However, research shows that humans are more efficient at exploring scenes, using a 

sophisticated guidance and control system to direct the saccadic activity to portions 

of the scene that contain information that will more readily allow memorization and 

recognition. It will be worthwhile to explore introduction of a similar capability into 

SCAN-IT. 

• Extension of SCAN-IT to permit recognition of memorized objects in different poses 

(vice different scales and orientations). The current saccadic scanning method per- 

forms well if spatial relationships (between edges and bars) in the target object are 

very similar to those in the memorized object. However, large changes in the pose of 
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the target object will adversely affect the recognition capabilities by changing those 

relationships, resulting in SCAN-IT not looking at the correct location to extract 

features. The capability to adapt the saccadic activity to the image being examined 

will solve that problem. 
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Appendix A.   Experimental Trial Data 

This appendix contains images of the object data used during the experimental trials 

detailed in Chapter V. Each of the different types of objects is shown in original scale 

and orientation, and examples of the objects in scaled and/or rotated configuration are 

included as well. 

A.l    Trial Set 1 Data 

the rain in Spain falls 

Figure 41.      The five objects memorized for Trial Set 1.   These objects also served as 
target images. 

*&P UIBJ — 

Figure 42.      Examples of the target image variants used for Trial Set 1. 
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A. 2    Trial Set 2 Data 

For the second set of experimental trials, the objects to be memorized were the same 

as used during the first set, and are shown in Figure 41. 
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Figure 43.      The original three target images (non-rotated/scaled) tested against for Trial 
Set 2 (top row) and examples of three of the variants (bottom row). 
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A. 3    Trial Set 3 Data 

Figure 44.      The five face objects memorized for Trial Set 3. 

Figure 45.      The original five target images tested against for Trial Set 3 (top two rows) 
and examples of three of the variants (bottom row). 
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A4    Trial Set 4 Data 

Figure 46.      The six face objects memorized for Trial Set 4. 
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Figure 47.      The original four target images tested against for Trial Set 4 (top two rows) 
and examples of two of the variants (bottom row). 
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A.5    Trial Set 5 Data 

Figure 48.      The five car objects memorized for Trial Set 5. 
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Figure 49.      The original 10 target images tested against for Trial Set 5. 
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Figure 50.      Three examples of the variants used for Trial Set 5 testing. 
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A.6    Trial Set 6 Data 

best in the world costs a lot 

fail each and every task asked of it 

Figure 51.      The four text objects memorized for Trial Set 6. The same car objects used 
for Trial set 5 were also memorized here. 
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This automobile is the 
best in the world, but 
costs a lot of money. 

This automobile is the 
best in the world, but 
costs a lot of money. 

This automobile is the 
best in the world, but 
costs a lot of money. 

This automobile is the 
best in the world, but 
costs a lot of money. 

This automobile is the 
best in the world, but 
costs a lot of money. 

This automobile will 
fail each and every 
task asked of it. 

This automobile will 
fail each and every 
task asked of it. 

Figure 52.      The original 10 target images tested against for Trial Set 6. 
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Figure 53.      Three examples of the variants used for Trial Set 6 testing. 
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Appendix B.   Video Mosaic Processing 

B.l    Introduction 

Living in the age of information has resulted in the generation and availability of vast 

stores of digital data. This data may be in the form of anything from simple textual data to 

complex video imagery, but regardless of the form, the problem of determining which data 

is relevant to a particular task is a daunting one. A prominent current example is found 

in the task of analyzing video imagery produced by Unmanned Aerial Vehicles (UAVs). 

To examine video footage for the presence of a particular target of interest, an automatic 

target detection algorithm may be applied to each frame individually, but may fail utterly 

because information necessary to determine the presence of the target was spread across 

multiple frames. Alternatively, a human observer may be used to examine the video 

playback, as we are quite effective at fusing information in the dynamic imagery internally, 

producing the illusion of continuity. However, the time and expense of dedicating man- 

hours to watching the playback quickly becomes prohibitive. Additionally, though we are 

quite good at performing such tasks, the observer suffers the human frailties of distraction 

and exhaustion as the length of the playback session increases. 

A method is therefore desired to combine the advantages of automation with those 

of using a human observer. SCAN-IT is proposed as a method to perform this task. The 

fundamental concept is to convert a sequence of video frames into a single video mosaic that 

contains the 'important' information available in any of the individual frames. Because 

SCAN-IT is motivated by human physiology, the information in the mosaic is what would 

be considered important to the human visual perception system. The two primary tasks 

needing to be performed, then, are registration of the video frames to each other, and 

subsequent determination of the details in each frame that should be preserved in the 

mosaic. 

The development and functional capabilities of SCAN-IT have been extensively de- 

tailed elsewhere in this document, so no more details will be offered here. The following 

sections will describe the use of SCAN-IT to perform the registration and fusion described 

above. 
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B.2   Frame Registration and Fusion 

Using SCAN-IT for frame registration is actually a similar problem to using it for 

object recognition as reported on in Chapter V. In this case, the "object" being memorized 

will be the contents of a video frame, and recognition will result when a subsequent video 

frame is presented to the system and the same, or similar, content is found. This process 

can be thought of as the automated determination of fiducial landmarks in one frame, 

followed by the subsequent discovery of the same landmarks in the next frame. Once 

those markers are found, calculation of the translation and rotation required to register 

the frames is trivial. 

An example of the data used to demonstrate the registration capability is provided 

in Figure B.2, which shows two different frames from video imagery captured by a UAV. a 

and b show the two frames prior to any processing, c shows the saccadic scan of the first 

frame during the memorization process, and d shows the saccadic scan during the search 

of the second frame. The dashed line in Figure B.2d shows the path as the vision model 

searched for a 'familiar' landmark, and the solid line shows the discovery and replication 

of the memorized path over the new frame. 

Once the location of the landmarks (fixation points) from the first frame are found 

on the second frame, the rotation and translation for proper registration can be calcu- 

lated and the two frames can be aligned. This process is repeated for all frames, and 

at its conclusion, the relative spatial location of all frames can be determined. However, 

ambiguity is introduced at every spatial location at which two or more frames overlap. 

Because simply overlaying each frame over the previous frame will result in the loss of any 

information available in previous frames, a method is desired to fuse the video data such 

that the "important" information in each frame is maintained. The physiological basis of 

SCAN-IT prompts one to define these important visual features as those producing a large 

response within the simulated visual field. The fusion is thus performed by weighting the 

contribution of each of the original video frames Jona pixel-by-pixel basis. The weighting 

for each spatial location is determined by 
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Wh  = \Ex^  (17) 
2^=1 l-^a.yl 

where W/«„ is the weight to be applied to the magnitude at spatial location (x, y) of the 

unprocessed frame ij, \E&y\ is the magnitude of the edge response at spatial location (x,y) 

of the registered edge map image fa, and F is the number of frames being processed. Thus 

the contribution of each frame (at a particular (x, y) location) is directly proportional to 

the contribution of the corresponding edge map. Given input frames I{ then, the value at 

each location in the resultant output mosaic O is given by 

o«* = Dw&-W (18) 

Figure 55 shows an example of using the process described above to register and 

fuse six frames of the UAV data. Though this is obviously a simple demonstration, it is 

considered illustrative of the potential of the technique. It is not currently reasonable to 

implement the process in a real time manner (interpreted Matlab code on a Sun UltraSparc 

1 requires approximately 1 second per saccade), but work is ongoing to increase efficiency. 

Rotational adjustments are also somewhat limited by the number of oriented Gabor filters 

used in SCAN-IT, but as efficiency increases, the number of orientations (filters) can be 

increased. 
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Figure 54. a,b) Two of the video frames used for this registration and fusion demonstra- 
tion, c) Scanpath of the vision model during memorization of the first frame, 
d) Scanpath of the vision model during search of the subsequent frame. The 
dashed line indicates the saccadic search, while the solid line denotes discov- 
ery of the memorized path. 
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B.3    Conclusion 

For the work presented here, a method of reducing multiple frames of video imagery 

into a single video mosaic has been introduced. The frames of the original imagery are first 

registered to each other using a model based on characteristics of the human visual system 

to 'memorize' each frame and then 'recognize' where the next frame properly aligns with it. 

Once this registration process is complete, the mosaic is produced by fusing the important 

(to the human visual system) information from each of the individual frames into a single, 

coherent image. Such a data reduction method will greatly reduce the manpower needed 

for analysis by eliminating the need to actively observe either dynamic or frame-by-frame 

playback of the imagery. At the same time, important information that may have only 

been present in a very few frames will be retained. 
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